ﻻ يوجد ملخص باللغة العربية
We establish a connection between the problem of constructing maximal collections of mutually unbiased bases (MUBs) and an open problem in the theory of Lie algebras. More precisely, we show that a collection of m MUBs in K^n gives rise to a collection of m Cartan subalgebras of the special linear Lie algebra sl_n(K) that are pairwise orthogonal with respect to the Killing form, where K=R or K=C. In particular, a complete collection of MUBs in C^n gives rise to a so-called orthogonal decomposition (OD) of sl_n(C). The converse holds if the Cartan subalgebras in the OD are also *-closed, i.e., closed under the adjoint operation. In this case, the Cartan subalgebras have unitary bases, and the above correspondence becomes equivalent to a result relating collections of MUBs to collections of maximal commuting classes of unitary error bases, i.e., orthogonal unitary matrices. It is a longstanding conjecture that ODs of sl_n(C) can only exist if n is a prime power. This corroborates further the general belief that a complete collection of MUBs can only exist in prime power dimensions. The connection to ODs of sl_n(C) potentially allows the application of known results on (partial) ODs of sl_n(C) to MUBs.
We study the connection between mutually unbiased bases and mutually orthogonal extraordinary supersquares, a wider class of squares which does not contain only the Latin squares. We show that there are four types of complete sets of mutually orthogo
In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement; in particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communicati
The two observables are complementary if they cannot be measured simultaneously, however they become maximally complementary if their eigenstates are mutually unbiased. Only then the measurement of one observable gives no information about the other
We derive new inequalities for the probabilities of projective measurements in mutually unbiased bases of a qudit system. These inequalities lead to wider ranges of validity and tighter bounds on entropic uncertainty inequalities previously derived in the literature.
We investigate the interplay between mutual unbiasedness and product bases for multiple qudits of possibly different dimensions. A product state of such a system is shown to be mutually unbiased to a product basis only if each of its factors is mutua