ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement under restricted operations: Analogy to mixed-state entanglement

74   0   0.0 ( 0 )
 نشر من قبل Stephen D. Bartlett
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the classification of bi-partite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.



قيم البحث

اقرأ أيضاً

Coherence and entanglement are the two most crucial resources for various quantum information processing tasks. Here, we study the interplay of coherence and entanglement under the action of different three qubit quantum cloning operations. Consideri ng certain well-known quantum cloning machines (input state independent and dependent), we provide examples of coherent and incoherent operations performed by them. We show that both the output entanglement and coherence could vanish under incoherent cloning operations. Coherent cloning operations on the other hand, could be used to construct a universal and optimal coherence machine. It is also shown that under coherent cloning operations the output two qubit entanglement could be maximal even if the input coherence is negligible. Also it is possible to generate a fixed amount of entanglement independent of the nature of the input state.
Entanglement verification and measurement is essential for experimental tests of quantum mechanics and also for quantum communication and information science. Standard methods of verifying entanglement in a bipartite mixed state require detection of both particles and involve coincidence measurement. We present a method that enables us to verify and measure entanglement in a two-photon mixed state without detecting one of the photons, i.e., without performing any coincidence measurement or postselection. We consider two identical sources, each of which can generate the same two-photon mixed state but they never emit simultaneously. We show that one can produce a set of single-photon interference patterns, which contain information about entanglement in the two-photon mixed state. We prove that it is possible to retrieve the information about entanglement from the visibility of the interference patterns. Our method reveals a distinct avenue for verifying and measuring entanglement in mixed states.
Entanglement is a fundamental feature of quantum mechanics, considered a key resource in quantum information processing. Measuring entanglement is an essential step in a wide range of applied and foundational quantum experiments. When a two-particle quantum state is not pure, standard methods to measure the entanglement require detection of both particles. We introduce a method in which detection of only one of the particles is required to characterize the entanglement of a two-particle mixed state. Our method is based on the principle of quantum interference. We use two identical sources of a two-photon mixed state and generate a set of single-photon interference patterns. The entanglement of the two-photon quantum state is characterized by the visibility of the interference patterns. Our experiment thus opens up a distinct avenue for verifying and measuring entanglement, and can allow for mixed state entanglement characterization even when one particle in the pair cannot be detected.
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system st ate by introducing the concept of hidden entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.
61 - Xin Wang , Mark M. Wilde 2018
This paper establishes single-letter formulas for the exact entanglement cost of generating bipartite quantum states and simulating quantum channels under free quantum operations that completely preserve positivity of the partial transpose (PPT). Fir st, we establish that the exact entanglement cost of any bipartite quantum state under PPT-preserving operations is given by a single-letter formula, here called the $kappa$-entanglement of a quantum state. This formula is calculable by a semidefinite program, thus allowing for an efficiently computable solution for general quantum states. Notably, this is the first time that an entanglement measure for general bipartite states has been proven not only to possess a direct operational meaning but also to be efficiently computable, thus solving a question that has remained open since the inception of entanglement theory over two decades ago. Next, we introduce and solve the exact entanglement cost for simulating quantum channels in both the parallel and sequential settings, along with the assistance of free PPT-preserving operations. The entanglement cost in both cases is given by the same single-letter formula and is equal to the largest $kappa$-entanglement that can be shared by the sender and receiver of the channel. It is also efficiently computable by a semidefinite program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا