ﻻ يوجد ملخص باللغة العربية
We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and the evolution of the state is controlled by phase shifters and absorbers. A related experiment was reported previously by Hasegawa et al. [Phys. Rev. A 53, 2486 (1996)] to verify the cyclic spatial geometric phase. The interpretation of this experiment, namely to ascribe a geometric phase to this particular state evolution, has met severe criticism from Wagh [Phys. Rev. A 59, 1715 (1999)]. The extension to a non-cyclic evolution manifests the correctness of the interpretation of the previous experiment by means of an explicit calculation of the non-cyclic geometric phase in terms of paths on the Bloch-sphere.
We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and
Using Kaluza-Klein theory we discuss the quantum mechanics of a particle in the background of a domain wall (brane) embedded in extra dimensions. We show that the geometric phases associated with the particle depend on the topological features of tho
We report the experimental observation of the nonlocal geometric phase in Hanbury Brown-Twiss polarized intensity interferometry. The experiment involves two independent, polar- ized, incoherent sources, illuminating two polarized detectors. Varying
Geometric phases, arising from cyclic evolutions in a curved parameter space, appear in a wealth of physical settings. Recently, and largely motivated by the need of an experimentally realistic definition for quantum computing applications, the quant
In this paper we define a non-dynamical phase for a spin-1/2 particle in a rotating magnetic field in the non-adiabatic non-cyclic case, and this phase can be considered as a generalized Berry phase. We show that this phase reduces to the geometric B