In this Reply we propose a modified security proof of the Quantum Dense Key Distribution protocol detecting also the eavesdropping attack proposed by Wojcik in his Comment.
This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We
hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
In a Letter, Cabello proposed a quantum key distribution (QKD) Protocol which attended to Holevo limit. In this comment, we show that Eve could use a simple plan to distinguish among quantum keys, without being detected by Alice and Bob. In following
, we show that our approach is not restricted to Cabello Protocol. With attention to our Eavesdropping approach, it seems that Mors arguments for no-cloning principal for orthogonal states is not general enough to avoid eavesdropping.
We stand by our findings in Phys. Rev A. 96, 022126 (2017). In addition to refuting the invalid objections raised by Peleg and Vaidman, we report a retrocausation problem inherent in Vaidmans definition of the past of a quantum particle.
In reply to Vaidmans Comment [arXiv:1304.6689], we show that his claim that our Protocol for Direct Counterfactual Quantum Communication [PRL 110, 170502 (2013), arXiv:1206.2042] is counterfactual only for one type of information bit is wrong.
A corresponding comment, raised by Kao and Hwang, claims that the reconstructor Bob1 is unable to obtain the expected secret information in (t, n) Threshold d-level Quantum Secret Sharing (TDQSS)[Scientific Reports, Vol. 7, No. 1 (2017), pp.6366] . I
n this reply, we show the TDQSS scheme can obtain the dealers secret information in the condition of adding a step on disentanglement.