ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconditional Security of Three State Quantum Key Distribution Protocols

63   0   0.0 ( 0 )
 نشر من قبل Jean-Christian Boileau
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the BB84 and B92 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new family of three state protocols that offers advantages over the previous schemes. Until now, an error rate threshold for security of the symmetric trine spherical code QKD protocol has only been shown for the trivial intercept/resend eavesdropping strategy. In this paper, we prove the unconditional security of the trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also discuss on how this proof applies to a version of the trine spherical code QKD protocol where the error rate is evaluated from the number of inconclusive events.


قيم البحث

اقرأ أيضاً

We report the security analysis of time-coding quantum key distribution protocols. The protocols make use of coherent single-photon pulses. The key is encoded in the photon time-detection. The use of coherent superposition of states allows to detect eavesdropping of the key. We give a mathematical model of a first protocol from which we derive a second, simpler, protocol. We derive the security analysis of both protocols and find that the secure rates can be similar to those obtained with the BB84 protocol. We then calculate the secure distance for those protocols over standard fibre links. When using low-noise superconducting single photon detectors, secure distances over 200 km can be foreseen. Finally, we analyse the consequences of photon-number splitting attacks when faint pulses are used instead of single photon pulses. A decoy states technique can be used to prevent such attacks.
Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically fin d optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.
97 - Eneet Kaur , Saikat Guha , 2019
We consider discrete-modulation protocols for continuous-variable quantum key distribution (CV-QKD) that employ a modulation constellation consisting of a finite number of coherent states and that use a homodyne or a heterodyne-detection receiver. We establish a security proof for collective attacks in the asymptotic regime, and we provide a formula for an achievable secret-key rate. Previous works established security proofs for discrete-modulation CV-QKD protocols that use two or three coherent states. The main constituents of our approach include approximating a complex, isotropic Gaussian probability distribution by a finite-size Gauss-Hermite constellation, applying entropic continuity bounds, and leveraging previous security proofs for Gaussian-modulation protocols. As an application of our method, we calculate secret-key rates achievable over a lossy thermal bosonic channel. We show that the rates for discrete-modulation protocols approach the rates achieved by a Gaussian-modulation protocol as the constellation size is increased. For pure-loss channels, our results indicate that in the high-loss regime and for sufficiently large constellation size, the achievable key rates scale optimally, i.e., proportional to the channels transmissivity.
We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure k ey rates are the highest reported so far at all fibre distances.
Information-theoretical security of quantum key distribution (QKD) has been convincingly proven in recent years and remarkable experiments have shown the potential of QKD for real world applications. Due to its unique capability of combining high key rate and security in a realistic finite-size scenario, the efficient version of the BB84 QKD protocol endowed with decoy states has been subject of intensive research. Its recent experimental implementation finally demonstrated a secure key rate beyond 1 Mbps over a 50 km optical fiber. However the achieved rate holds under the restrictive assumption that the eavesdropper performs collective attacks. Here, we review the protocol and generalize its security. We exploit a map by Ahrens to rigorously upper bound the Hypergeometric distribution resulting from a general eavesdropping. Despite the extended applicability of the new protocol, its key rate is only marginally smaller than its predecessor in all cases of practical interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا