ﻻ يوجد ملخص باللغة العربية
Entanglement in quantum XY spin chains of arbitrary length is investigated via a recently-developed global measure suitable for generic quantum many-body systems. The entanglement surface is determined over the phase diagram, and found to exhibit structure richer than expected. Near the critical line, the entanglement is peaked (albeit analytically), consistent with the notion that entanglement--the non-factorization of wave functions--reflects quantum correlations. Singularity does, however, accompany the critical line, as revealed by the divergence of the field-derivative of the entanglement along the line. The form of this singularity is dictated by the universality class controlling the quantum phase transition.
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We
We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of long distance entanglement (LDE), namely a finite ground-state entanglement between the end spins of a quantum spin chain with open boundary conditi
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small
Recent theoretical work has shown that the competition between coherent unitary dynamics and stochastic measurements, performed by the environment, along wavefunction trajectories can give rise to transitions in the entanglement scaling. In this work
We introduce an experimentally accessible network representation for many-body quantum states based on entanglement between all pairs of its constituents. We illustrate the power of this representation by applying it to a paradigmatic spin chain mode