ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsed squeezed vacuum characterization without homodyning

63   0   0.0 ( 0 )
 نشر من قبل Jerome Wenger
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct photon detection is experimentally implemented to measure the squeezing and purity of a single-mode squeezed vacuum state without an interferometric homodyne detection. Following a recent theoretical proposal [arXiv quant-ph/0311119], the setup only requires a tunable beamsplitter and a single-photon detector to fully characterize the generated Gaussian states. The experimental implementation of this procedure is discussed and compared with other reference methods.



قيم البحث

اقرأ أيضاً

Multipartite entanglement is a key resource for various quantum information tasks. Here, we present a scheme for generating genuine tripartite entanglement via nonlinear optical processes. We derive, in the Fock basis, the corresponding output state which we termed the coupled three-mode squeezed vacuum. We find unintuitive behaviors arise in intensity squeezing between two of the three output modes due to the coupling present. We also show that this state can be genuinely tripartite entangled.
We study the dynamics of a general multi-emitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squee zing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain condition.
We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evo lution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency.
We experimentally and theoretically analyze the transmission of continuous-wave and pulsed squeezed vacuum through rubidium vapor under the conditions of electromagnetically induced transparency. Frequency- and time-domain homodyne tomography is used to measure the quadrature noise and reconstruct the quantum states of the transmitted light. A simple theoretical model explains the spectrum and degradation of the transmitted squeezing with high precision.
Bright squeezed vacuum (BSV) is a non-classical macroscopic state of light, which can be generated through high-gain parametric down-conversion or four-wave mixing. Although BSV is an important tool in quantum optics and has a lot of applications, it s theoretical description is still not complete. In particular, the existing description in terms of Schmidt modes fails to explain the spectral broadening observed in experiment as the mean number of photons increases. On the other hand, the semi-classical description accounting for the broadening does not allow to decouple the intermodal photon-number correlations. In this work, we present a new generalized theoretical approach to describe the spatial properties of BSV. This approach is based on exchanging the $(textbf{k},t)$ and $(omega,z)$ representations and solving a system of integro-differential equations. Our approach predicts correctly the dynamics of the Schmidt modes and the broadening of the spectrum with the increase in the BSV mean photon number due to a stronger pumping. Moreover, the model succesfully describes various properties of a widely used experimental configuration with two crystals and an air gap between them, namely an SU(1,1) interferometer. In particular, it predicts the narrowing of the intensity distribution, the reduction and shift of the side lobes, and the decline in the interference visibility as the mean photon number increases due to stronger pumping. The presented experimental results confirm the validity of the new approach. The model can be easily extended to the case of frequency spectrum, frequency Schmidt modes and other experimental configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا