ﻻ يوجد ملخص باللغة العربية
Uhlmanns concept of quantum holonomy for paths of density operators is generalised to the off-diagonal case providing insight into the geometry of state space when the Uhlmann holonomy is undefined. Comparison with previous off-diagonal geometric phase definitions is carried out and an example comprising the transport of a Bell-state mixture is given.
We discuss a scheme for reconstructing experimentally the diagonal elements of the density matrix of quantum optical states. Applications to PDC heralded photons, multi-thermal and attenuated coherent states are illustrated and discussed in some details.
Off-diagonal profiles of local densities (e.g. order parameter or energy density) are calculated at the bulk critical point, by conformal methods, for different types of boundary conditions (free, fixed and mixed). Such profiles, which are defined by
We propose an efficient quantum algorithm for simulating the dynamics of general Hamiltonian systems. Our technique is based on a power series expansion of the time-evolution operator in its off-diagonal terms. The expansion decouples the dynamics du
In this short note we discuss the relation between the so-called Off-Diagonal-Long-Range-Order in many-body interacting quantum systems introduced by C. N. Yang in Rev. Mod. Phys. {bf 34}, 694 (1962) and entanglement. We argue that there is a direct relation between these two concepts.
An adiabatic change of parameters along a closed path may interchange the (quasi-)eigenenergies and eigenspaces of a closed quantum system. Such discrepancies induced by adiabatic cycles are refereed to as the exotic quantum holonomy, which is an ext