ﻻ يوجد ملخص باللغة العربية
A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum query complexity of the OR function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing k instances of the Disjointness function. Our direct product theorems imply a time-space tradeoff T^2*S=Omega(N^3) for sorting N items on a quantum computer, which is optimal up to polylog factors. They also give several tight time-space and communication-space tradeoffs for the problems of Boolean matrix-vector multiplication and matrix multiplication.
We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theor
In function inversion, we are given a function $f: [N] mapsto [N]$, and want to prepare some advice of size $S$, such that we can efficiently invert any image in time $T$. This is a well studied problem with profound connections to cryptography, data
We construct a quantum oracle relative to which $mathsf{BQP} = mathsf{QMA}$ but cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist, a counterintuitive result in light of the fact that pseudorandom states can be b
We give a direct product theorem for the entanglement-assisted interactive quantum communication complexity of an $l$-player predicate $mathsf{V}$. In particular we show that for a distribution $p$ that is product across the input sets of the $l$ pla
We propose a new point of view regarding the problem of time in quantum mechanics, based on the idea of replacing the usual time operator $mathbf{T}$ with a suitable real-valued function $T$ on the space of physical states. The proper characterizatio