ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of Quantum Motion: Beyond Fermi-golden-rule and Lyapunov decay

100   0   0.0 ( 0 )
 نشر من قبل Wen-Ge Wang
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study, analytically and numerically, the stability of quantum motion for a classically chaotic system. We show the existence of different regimes of fidelity decay which deviate from Fermi Golden rule and Lyapunov decay.



قيم البحث

اقرأ أيضاً

129 - C. Dullemond 2002
A study is made of the behavior of unstable states in simple models which nevertheless are realistic representations of situations occurring in nature. It is demonstrated that a non-exponential decay pattern will ultimately dominate decay due to a lo wer limit to the energy. The survival rate approaches zero faster than the inverse square of the time when the time goes to infinity.
149 - E. Langmann , G. Lindblad 2008
We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renorm alization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.
Quantum systems interacting with their environments can exhibit complex non-equilibrium states that are tempting to be interpreted as quantum analogs of chaotic attractors. Yet, despite many attempts, the toolbox for quantifying dissipative quantum c haos remains very limited. In particular, quantum generalizations of Lyapunov exponent, the main quantifier of classical chaos, are established only within the framework of continuous measurements. We propose an alternative generalization which is based on the unraveling of a quantum master equation into an ensemble of so-called quantum jump trajectories. These trajectories are not only a theoretical tool but a part of the experimental reality in the case of quantum optics. We illustrate the idea by using a periodically modulated open quantum dimer and uncover the transition to quantum chaos matched by the period-doubling route in the classical limit.
72 - J. M. Zhang , Y. Liu 2016
Fermis golden rule is of great importance in quantum dynamics. However, in many textbooks on quantum mechanics, its contents and limitations are obscured by the approximations and arguments in the derivation, which are inevitable because of the gener ic setting considered. Here we propose to introduce it by an ideal model, in which the quasi-continuum band consists of equaldistant levels extending from $-infty $ to $+infty $, and each of them couples to the discrete level with the same strength. For this model, the transition probability in the first order perturbation approximation can be calculated analytically by invoking the Poisson summation formula. It turns out to be a emph{piecewise linear} function of time, demonstrating on one hand the key features of Fermis golden rule, and on the other hand that the rule breaks down beyond the emph{Heisenberg time}, even when the first order perturbation approximation itself is still valid.
Particle-gamma coincidences from the 46Ti(p,p gamma)46Ti inelastic scattering reaction with 15-MeV protons are utilized to obtain gamma-ray spectra as a function of excitation energy. The rich data set allows analyzing the coincidence data with vario us gates on excitation energy. This enables, for many independent data sets, a simultaneous extraction of level density and radiative strength function (RSF). The results are consistent with one common level density. The data seem to exhibit a universal RSF as the deduced RSFs from different excitation energies show only small fluctuations provided that only excitation energies above 3 MeV are taken into account. If transitions to well-separated low-energy levels are included, the deduced RSF may change by a factor of 2-3, which might be expected due to the involved Porter-Thomas fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا