ﻻ يوجد ملخص باللغة العربية
Effective classicality of a property of a quantum system can be defined using redundancy of its record in the environment. This allows quantum physics to approximate the situation encountered in the classical world: The information about a classical system can exist independently from its state. In quantum theory this is no longer possible: In an isolated quantum system the state and the information about it are inextricably linked, and any measurement may -- and usually will -- reset that state. However, when the information about the state of a quantum system is spread throughout the environment, it can be treated (almost) as in classical physics.
We examine the emergence of objectivity via quantum Darwinism through the use of a collision model, i.e. where the dynamics is modeled through sequences of unitary interactions between the system and the individual constituents of the environment, te
Quantum Darwinism proposes that the proliferation of redundant information plays a major role in the emergence of objectivity out of the quantum world. Is this kind of objectivity necessarily classical? We show that if one takes Spekkens notion of no
Quantum Darwinism extends the traditional formalism of decoherence to explain the emergence of classicality in a quantum universe. A classical description emerges when the environment tends to redundantly acquire information about the pointer states
We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states
We investigate the implications of quantum Darwinism in a composite quantum system with interacting constituents exhibiting a decoherence-free subspace. We consider a two-qubit system coupled to an $N$-qubit environment via a dephasing interaction. F