ﻻ يوجد ملخص باللغة العربية
The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer.
The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a dema
The hopes for scalable quantum computing rely on the threshold theorem: once the error per qubit per gate is below a certain value, the methods of quantum error correction allow indefinitely long quantum computations. The proof is based on a number o
Several proposals for quantum computation utilize a lattice type architecture with qubits trapped by a periodic potential. For systems undergoing many body interactions described by the Bose-Hubbard Hamiltonian, the ground state of the system carries
Recent experimental advances have demonstrated technologies capable of supporting scalable quantum computation. A critical next step is how to put those technologies together into a scalable, fault-tolerant system that is also feasible. We propose a
Here, we propose a way to control the interaction between qubits with always-on Ising interaction. Unlike the standard method to change the interaction strength with unitary operations, we fully make use of non-unitary properties of projective measur