ترغب بنشر مسار تعليمي؟ اضغط هنا

Logarithmic perturbation theory for radial Klein-Gordon equation with screened Coulomb potentials via $hbar$ expansions

67   0   0.0 ( 0 )
 نشر من قبل Irina Dobrovolska
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The explicit semiclassical treatment of logarithmic perturbation theory for the bound-state problem within the framework of the radial Klein-Gordon equation with attractive real-analytic screened Coulomb potentials, contained time-component of a Lorentz four-vector and a Lorentz-scalar term, is developed. Based upon $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues for the Hulthen potential containing the vector part as well as the scalar component are considered.

قيم البحث

اقرأ أيضاً

The explicit semiclassical treatment of the logarithmic perturbation theory for the bound-state problem for the spherical anharmonic oscillator and the screened Coulomb potential is developed. Based upon the $hbar$-expansions and suitable quantizatio n conditions a new procedure for deriving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As examples, the perturbation expansions for the energy eigenvalues of the quartic anharmonic oscillator and the Debye potential are considered.
62 - Jingye Yan , Hong Zhang , Xu Qian 2020
We propose and analyze two regularized finite difference methods for the logarithmic Klein-Gordon equation (LogKGE). Due to the blowup phenomena caused by the logarithmic nonlinearity of the LogKGE, it is difficult to construct numerical schemes and establish their error bounds. In order to avoid singularity, we present a regularized logarithmic Klein-Gordon equation (RLogKGE) with a small regularized parameter $0<varepsilonll1$. Besides, two finite difference methods are adopted to solve the regularized logarithmic Klein-Gordon equation (RLogKGE) and rigorous error bounds are estimated in terms of the mesh size $h$, time step $tau$, and the small regularized parameter $varepsilon$. Finally, numerical experiments are carried out to verify our error estimates of the two numerical methods and the convergence results from the LogKGE to the RLogKGE with the linear convergence order $O(varepsilon)$.
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group cor responding to the Coulomb potential, and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally.
The explicit semiclassical treatment of the logarithmic perturbation theory for the bound-state problem of the radial Shrodinger equation with the screened Coulomb potential is developed. Based upon h-expansions and new quantization conditions a nove l procedure for deriving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained.
155 - Sh. M. Nagiyev , A. I. Ahmadov , 2020
We consider the quantum mechanical problem of the motion of a spinless charged relativistic particle with mass$M$, described by the Klein-Fock-Gordon equation with equal scalar $S(vec{r})$ and vector $V(vec{r})$ Coulomb plus ring-shaped potentials. I t is shown that the system under consideration has both a discrete at $left|Eright|<Mc^{2} $ and a continuous at $left|Eright|>Mc^{2} $ energy spectra. We find the analytical expressions for the corresponding complete wave functions. A dynamical symmetry group $SU(1,1)$ for the radial wave equation of motion is constructed. The algebra of generators of this group makes it possible to find energy spectra in a purely algebraic way. It is also shown that relativistic expressions for wave functions, energy spectra and group generators in the limit $cto infty $ go over into the corresponding expressions for the nonrelativistic problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا