ﻻ يوجد ملخص باللغة العربية
A qubit chosen from equatorial or polar great circles on a Bloch sphere can be remotely prepared with an Einstain-Podolsky-Rosen (EPR) state shared and a cbit communication. We generalize this protocal into an arbitrary longitudinal qubit on the Bloch sphere in which the azimuthal angle phi can be an arbitrary value instead of only being zero. The generalized scheme was experimentally realized using liquid-state nuclear magnetic resonance (NMR) techniques. Also, we have experimentally demonstrated remote state measurement (RSM) on an arbitary qubit proposed by Pati.
We have experimentally implemented remote state preparation (RSP) of a qubit from a hydrogen to a carbon nucleus in molecules of carbon-13 labeled chloroform $^{13}$CHCl$_{3}$ over interatomic distances using liquid-state nuclear magnetic resonance (
Quantum information theory has revolutionized the way in which information is processed using quantum resources such as entangled states, local operations and classical communications. Two important protocols in quantum communications are quantum tel
We consider a scenario of remote state preparation of qubits where a single copy of an entangled state is shared between Alice and several Bobs who sequentially perform unsharp single-particle measurements. We show that a substantial number of Bobs c
We propose a deterministic remote state preparation (RSP) scheme for preparing an arbitrary (including pure and mixed) qubit, where a partially entangled state and finite classical communication are used. To our knowledge, our scheme is the first RSP
Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Recent experiments have shown that superconducting qubits can control and detect individual phonons in a