ﻻ يوجد ملخص باللغة العربية
We employ the quantum state of a single photon entangled with the vacuum (|1,0>-|0,1>), generated by a photon incident upon a symmetric beam splitter, to teleport single-mode quantum states of light by means of the Bennett protocol. Teleportation of coherent states results in truncation of their Fock expansion to the first two terms. We analyze the teleported ensembles by means of homodyne tomography and obtain fidelities of up to 99 per cent for low source state amplitudes. This work is an experimental realization of the quantum scissors device proposed by Pegg, Phillips and Barnett (Phys. Rev. Lett. 81, 1604 (1998))
We experimentally demonstrate the noiseless teleportation of a single photon by conditioning on quadrature Bell measurement results near the origin in phase space and thereby circumventing the photon loss that otherwise occurs even in optimal gain-tu
We study the interaction between a single two-level atom and a single-photon probe pulse in a guided mode of a nanofiber. We examine the situation of chiral interaction, where the atom has a dipole rotating in the meridional plane of the nanofiber, a
We introduce and experimentally explore the concept of quantum non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quant
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 pm 0.02 and F
Traditional continuous variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous variable teleportation that approaches unit fidelity with finite r