ﻻ يوجد ملخص باللغة العربية
The Deutsch-Jozsa algorithm is experimentally demonstrated for three-qubit functions using pure coherent superpositions of Li$_{2}$ rovibrational eigenstates. The functions character, either constant or balanced, is evaluated by first imprinting the function, using a phase-shaped femtosecond pulse, on a coherent superposition of the molecular states, and then projecting the superposition onto an ionic final state, using a second femtosecond pulse at a specific time delay.
The nitrogen-vacancy defect center (NV center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature i
Quantum information processing has been one of the pillars of the new information age. In this sense, the control and processing of quantum information plays a fundamental role, and computers capable of manipulating such information have become a rea
We present a simple scheme to implement the Deutsch-Jozsa algorithm based on two-atom interaction in a thermal cavity. The photon-number-dependent parts in the evolution operator are canceled with the strong resonant classical field added. As a resul
In the {em distributed Deutsch-Jozsa promise problem}, two parties are to determine whether their respective strings $x,yin{0,1}^n$ are at the {em Hamming distance} $H(x,y)=0$ or $H(x,y)=frac{n}{2}$. Buhrman et al. (STOC 98) proved that the exact {em
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between no