ﻻ يوجد ملخص باللغة العربية
The Floydian trajectory method of quantum mechanics and the appearance of microstates of the Schr{o}dinger equation are reviewed and contrasted with the Bohm interpretation of quantum mechanics. The kinematic equation of Floydian trajectories is analysed in detail and a new definition of the variational derivative of kinetic energy with respect to total energy is proposed for which Floydian trajectories have an explicit time dependence with a frequency equal to the beat frequency between adjacent pairs of energy eigenstates in the case of bound systems. In the case of unbound systems, Floydian and Bohmian trajectories are found to be related by a local transformation of time which is determined by the quantum potential.
In this work bound states for the Aharonov-Casher problem are considered. According to Hagens work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the $boldsymbol{ abla}cdotmathbf{E}$ term cannot be
We derive Bohms trajectories from Bells beables for arbitrary bipartite systems composed by dissipative noninteracting harmonic oscillators at finite temperature. As an application of our result, we calculate the Bohmian trajectories of particles des
This paper examines the nature of classical correspondence in the case of coherent states at the level of quantum trajectories. We first show that for a harmonic oscillator, the coherent state complex quantum trajectories and the complex classical tr
Weakly nonlinear energy transfer between normal modes of strongly resonant PDEs is captured by the corresponding effective resonant systems. In a previous article, we have constructed a large class of such resonant systems (with specific representati
In quantum mechanics textbooks the momentum operator is defined in the Cartesian coordinates and rarely the form of the momentum operator in spherical polar coordinates is discussed. Consequently one always generalizes the Cartesian prescription to o