ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tipping Pulse Scheme for rf-SQUID Qubits

46   0   0.0 ( 0 )
 نشر من قبل Xingxiang Zhou
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a technique to control the macroscopic quantum state of an rf SQUID qubit. We propose to employ a stream of single flux quantum (SFQ) pulses magnetically coupled to the qubit junction to momentarily suppresses its critical current. This effectively lowers the barrier in the double-well rf-SQUID potential thereby increasing the tunneling oscillation frequency between the wells. By carefully choosing the time interval between SFQ pulses one may accelerate the interwell tunneling rate. Thus it is possible to place the qubit into a chosen superposition of flux states and then effectively to freeze the qubit state. We present both numerical simulations and analytical time-dependent perturbation theory calculations that demonstrate the technique. Using this strategy one may control the quantum state of the rf-SQUID in a way analogous to the pi pulses in other qubit schemes. Research supported in part by ARO grant # DAAG55-98-1-0367.


قيم البحث

اقرأ أيضاً

A practical strategy for synchronizing the properties of compound Josephson junction rf-SQUID qubits on a multiqubit chip has been demonstrated. The impacts of small ($sim1%$) fabrication variations in qubit inductance and critical current can be min imized by the application of a custom tuned flux offset to the CJJ structure of each qubit. This strategy allows for simultaneous synchronization of the qubit persistent current and tunnel splitting over a range of external bias parameters that is relevant for the implementation of an adiabatic quantum processor.
72 - Z. Kis , E. Paspalakis 2003
We propose a new approach for the arbitrary rotation of a three-level SQUID qubit and describe a new strategy for the creation of coherence transfer and entangled states between two three-level SQUID qubits. The former is succeeded by exploring the c oupled-uncoupled states of the system when irradiated with two microwave pulses, and the latter is succeeded by placing the SQUID qubits into a microwave cavity and used adiabatic passage methods for their manipulation.
The computer simulations of the process of single pulse readout from the flux-biased phase qubit is performed in the frame of one-dimensional Schroedinger equation. It has been demonstrated that the readout error can be minimized by choosing the opti mal pulse duration and the depth of a potential well, leading to the fidelity of 0.94 for 2ns and 0.965 for 12ns sinusoidal pulses.
We believe that the best chance to observe macroscopic quantum coherence (MQC) in a rf-SQUID qubit is to use on-chip RSFQ digital circuits for preparing, evolving and reading out the qubits quantum state. This approach allows experiments to be conduc ted on a very short time scale (sub-nanosecond) without the use of large bandwidth control lines that would couple environmental degrees of freedom to the qubit thus contributing to its decoherence. In this paper we present our design of a RSFQ digital control circuit for demonstrating MQC in a rf-SQUID. We assess some of the key practical issues in the circuit design including the achievement of the necessary flux bias stability. We present an active isolation structure to be used to increase coherence times. The structure decouples the SQUID from external degrees of freedom, and then couples it to the output measurement circuitry when required, all under the active control of RSFQ circuits. Research supported in part by ARO grant # DAAG55-98-1-0367.
The superconducting fluxonium circuit is an RF-SQUID-type flux qubit that uses a large inductance built from an array of Josephson junctions or a high kinetic inductance material. This inductance suppresses charge sensitivity exponentially and flux s ensitivity quadratically. In contrast to the transmon qubit, the anharmonicity of fluxonium can be large and positive, allowing for better separation between the low energy qubit manifold of the circuit and higher-lying excited states. Here, we propose a tunable coupling scheme for implementing two-qubit gates on fixed-frequency fluxonium qubits, biased at half flux quantum. In this system, both qubits and coupler are coupled capacitively and implemented as fluxonium circuits with an additional harmonic mode. We investigate the performance of the scheme by simulating a universal two-qubit fSim gate. In the proposed approach, we rely on a planar on-chip architecture for the whole device. Our design is compatible with existing hardware for transmon-based devices, with the additional advantage of lower qubit frequency facilitating high-precision gating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا