ﻻ يوجد ملخص باللغة العربية
The smallest quantum code that can correct all one-qubit errors is based on five qubits. We experimentally implemented the encoding, decoding and error-correction quantum networks using nuclear magnetic resonance on a five spin subsystem of labeled crotonic acid. The ability to correct each error was verified by tomography of the process. The use of error-correction for benchmarking quantum networks is discussed, and we infer that the fidelity achieved in our experiment is sufficient for preserving entanglement.
Experimental realization of stabilizer-based quantum error correction (QEC) codes that would yield superior logical qubit performance is one of the formidable task for state-of-the-art quantum processors. A major obstacle towards realizing this goal
Fault-tolerant quantum computing demands many qubits with long lifetimes to conduct accurate quantum gate operations. However, external noise limits the computing time of physical qubits. Quantum error correction codes may extend such limits, but imp
Quantum computers promise to solve certain problems exponentially faster than possible classically but are challenging to build because of their increased susceptibility to errors. Remarkably, however, it is possible to detect and correct errors with
Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum er
We present a scheme for correcting qubit loss error while quantum computing with neutral atoms in an addressable optical lattice. The qubit loss is first detected using a quantum non-demolition measurement and then transformed into a standard qubit e