ﻻ يوجد ملخص باللغة العربية
We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.
We demonstrate the fast accumulation of Cr atoms in a conservative potential from a magnetically guided atomic beam. Without laser cooling on a cycling transition, a single dissipative step realized by optical pumping allows to load atoms at a rate o
We demonstrate loading by laser ablation of $^{88}$Sr$^+$ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser i
We demonstrate a method for loading surface electrode ion traps by electron impact ionization. The method relies on the property of surface electrode geometries that the trap depth can be increased at the cost of more micromotion. By introducing a bu
We demonstrate an efficient scheme for continuous trap loading based upon spatially selective optical pumping. We discuss the case of $^{1}$S$_{0}$ calcium atoms in an optical dipole trap (ODT), however, similar strategies should be applicable to a w
Recently, we have experimentally demonstrated a continuous loading mechanism for an optical dipole trap from a guided atomic beam [1]. The observed evolution of the number of atoms and temperature in the trap are consequences of the unusual trap geom