ﻻ يوجد ملخص باللغة العربية
We report on a new kind of experimental investigations of the tension between quantum nonlocally and relativity. Entangled photons are sent via an optical fiber network to two villages near Geneva, separated by more than 10 km where they are analyzed by interferometers. The photon pair source is set as precisely as possible in the center so that the two photons arrive at the detectors within a time interval of less than 5 ps (corresponding to a path length difference of less than 1 mm). One detector is set in motion so that both detectors, each in its own inertial reference frame, are first to do the measurement! The data always reproduces the quantum correlations, making it thus more difficult to consider the projection postulate as a compact description of real collapses of the wave-function.
Most working scientists hold fast to the concept of realism - a viewpoint according to which an external reality exists independent of observation. But quantum physics has shattered some of our cornerstone beliefs. According to Bells theorem, any the
In this paper we describe a test of Bell inequalities using a non- maximally entangled state, which represents an important step in the direction of eliminating the detection loophole. The experiment is based on the creation of a polarisation entangl
Since Bells theorem, it is known that the concept of local realism fails to explain quantum phenomena. Indeed, the violation of a Bell inequality has become a synonym of the incompatibility of quantum theory with our classical notion of cause and eff
The Leggett-Garg inequality attempts to classify experimental outcomes as arising from one of two possible classes of physical theories: those described by macrorealism (which obey our intuition about how the macroscopic classical world behaves), and
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for some realistic models with hidden variables. There are, however, two powerful theorems against t