ﻻ يوجد ملخص باللغة العربية
We present a nonlinear decoherence model which models decoherence effect caused by various decohereing sources in a quantum system through a nonlinear coupling between the system and its environment, and apply it to investigating decoherence in nonclassical motional states of a single trapped ion. We obtain an exactly analytic solution of the model and find very good agreement with experimental results for the population decay rate of a single trapped ion observed in the NIST experiments by Meekhof and coworkers (D. M. Meekhof, {it et al.}, Phys. Rev. Lett. {bf 76}, 1796 (1996)).
We report adiabatic passage experiments with a single trapped $^{40}$Ca$^+$ ion. By applying a frequency chirped laser pulse with a Gaussian amplitude envelope we reach a transfer efficiency of 0.990(10) on an optical transition from the electronic g
Quantum information technologies require careful control for generating and preserving a desired target quantum state. The biggest practical obstacle is, of course, decoherence. Therefore, the reachability analysis, which in our scenario aims to esti
We implement all single-qubit operations with fidelities significantly above the minimum threshold required for fault-tolerant quantum computing, using a trapped-ion qubit stored in hyperfine atomic clock states of $^{43}$Ca$^+$. We measure a combine
We present a scheme to prepare a quantum state in a ion trap with probability approaching to one by means of ion trap quantum computing and Grovers quantum search algorithm acting on trapped ions.
We demonstrate an experimental realization of remote state preparation via the quantum teleportation algorithm, using an entangled photon pair in the polarization degree of freedom as the quantum resource. The input state is encoded on the path of on