ترغب بنشر مسار تعليمي؟ اضغط هنا

An NMR-based nanostructure switch for quantum logic

290   0   0.0 ( 0 )
 نشر من قبل John Henry Reina Estupinan
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a nanostructure switch based on nuclear magnetic resonance (NMR) which offers reliable quantum gate operation, an essential ingredient for building a quantum computer. The nuclear resonance is controlled by the magic number transitions of a few-electron quantum dot in an external magnetic field.

قيم البحث

اقرأ أيضاً

Off-state current leakage and switching delay has become the main challenge for continued complementary metal-oxide-semiconductor (CMOS) technology scaling. Previous work proposes a see-saw relay structure to mimic the operation of CMOS. This paper p resents a novel single-pole double-throw (SPDT) switch structure based on AlN piezoelectric cantilever beam to improve the former see-saw relay structure. Geometry parameters are given and key switch parameters such as actuation voltage, switching time and contact force have been calculated and compared with previous see-saw relay structure. Analysis and design process is shown and micro-fabrication process is described as well.
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
Boolean logic is the foundation of modern digital information processing. Recently, there has been a growing interest in phenomena based on pure spin currents, which allow to move from charge to spin based logic gates. We study a proof-of-principle l ogic device based on the ferrimagnetic insulator Yttrium Iron Garnet (YIG), with Pt strips acting as injectors and detectors for nonequilibrium magnons. We experimentally observe incoherent superposition of magnons generated by different injectors. This allows to implement a fully functional majority gate, enabling multiple logic operations (AND and OR) in one and the same device. Clocking frequencies of the order of several GHz and straightforward down-scaling make our device promising for applications.
Quantum key distribution (QKD) networks provide an infrastructure for establishing information-theoretic secure keys between legitimate parties via quantum and authentic classical channels. The deployment of QKD networks in real-world conditions face s several challenges, which are related in particular to the high costs of QKD devices and the condition to provide reasonable secret key rates. In this work, we present a QKD network architecture that provides a significant reduction in the cost of deploying QKD networks by using optical switches and reducing the number of QKD receiver devices, which use single-photon detectors. We describe the corresponding modification of the QKD network protocol. We also provide estimations for a network link of a total of 670 km length consisting of 8 nodes, and demonstrate that the switch-based architecture allows achieving significant resource savings of up to 28%, while the throughput is reduced by 8% only.
Nuclear magnetic resonance (NMR) provides an experimental setting to explore physical implementations of quantum information processing (QIP). Here we introduce the basic background for understanding applications of NMR to QIP and explain their curre nt successes, limitations and potential. NMR spectroscopy is well known for its wealth of diverse coherent manipulations of spin dynamics. Ideas and instrumentation from liquid state NMR spectroscopy have been used to experiment with QIP. This approach has carried the field to a complexity of about 10 qubits, a small number for quantum computation but large enough for observing and better understanding the complexity of the quantum world. While liquid state NMR is the only present-day technology about to reach this number of qubits, further increases in complexity will require new methods. We sketch one direction leading towards a scalable quantum computer using spin 1/2 particles. The next step of which is a solid state NMR-based QIP capable of reaching 10-30 qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا