ﻻ يوجد ملخص باللغة العربية
In this paper a quantum mechanical description of the assembly/disassembly process for microtubules is proposed. We introduce creation and annihilation operators that raise or lower the microtubule length by a tubulin layer. Following that, the Hamiltonian and corresponding equations of motion are derived that describe the dynamics of microtubules. These Heisenberg-type equations are then transformed to semi-classical equations using the method of coherent structures. The latter equations are very similar to the phenomenological equations that describe dynamic instability of microtubules in a tubulin solution.
We analyze experimental observations of microtubules undergoing small fluctuations about a balance point when mixed in solution of two different kinesin motor proteins, KLP61F and Ncd. It has been proposed that the microtubule movement is due to stoc
In this paper a quantum mechanical description of the assembly/disassembly process for microtubules is proposed. We introduce creation and annihilation operators that raise or lower the microtubule length by a tubulin layer. Following that, the Hamil
The novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digital infection rates and thousands death tolls daily. Enormeous effords are undertaken to achieve high coverage of immunization in order to reach herd immunity to
Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure (DC) has emerged as a model system
Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow l