ﻻ يوجد ملخص باللغة العربية
The signal from many single molecule experiments monitoring molecular processes, such as enzyme turnover via fluorescence and opening and closing of ion channel via the flux of ions, consists of a time series of stochastic on and off (or open and closed) periods, termed a two-state trajectory. This signal reflects the dynamics in the underlying multi-substate on-off kinetic scheme (KS) of the process. The determination of the underlying KS is difficult and sometimes even impossible due to the loss of information in the mapping of the mutli dimensional KS onto two dimensions. Here we introduce a new procedure that efficiently and optimally relates the signal to all equivalent underlying KSs. This procedure partitions the space of KSs into canonical (unique) forms that can handle any KS, and obtains the topology and other details of the canonical form from the data without the need for fitting. Also established are relationships between the data and the topology of the canonical form to the on-off connectivity of a KS. The suggested canonical forms constitute a powerful tool in discriminating between KSs. Based on our approach, the upper bound on the information content in two state trajectories is determined.
In many experiments, the aim is to deduce an underlying multi-substate on-off kinetic scheme (KS) from the statistical properties of a two-state trajectory. However, the mapping of a KS into a two-state trajectory leads to the loss of information abo
Single molecule data made of on and off events are ubiquitous. Famous examples include enzyme turnover, probed via fluorescence, and opening and closing of ion-channel, probed via the flux of ions. The data reflects the dynamics in the underlying mul
We present the results of an experiment with light microscopy performed to capture the trajectories of live Nitzschia sp. diatoms. The time series corresponding to the motility of this kind of cells along ninety-five circular-like trajectories have b
We study the stochastic kinetics of a signaling module consisting of a two-state stochastic point process with negative feedback. In the active state, a product is synthesized which increases the active-to-inactive transition rate of the process. We
Across diverse biological systems -- ranging from neural networks to intracellular signaling and genetic regulatory networks -- the information about changes in the environment is frequently encoded in the full temporal dynamics of the network nodes.