ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculating event-triggered average synaptic conductances from the membrane potential

45   0   0.0 ( 0 )
 نشر من قبل Alain Destexhe
 تاريخ النشر 2006
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optimal patterns of synaptic conductances for spike generation in central neurons is a subject of considerable interest. Ideally, such conductance time courses should be extracted from membrane potential (Vm) activity, but this is difficult because the nonlinear contribution of conductances to the Vm renders their estimation from the membrane equation extremely sensitive. We outline here a solution to this problem based on a discretization of the time axis. This procedure can extract the time course of excitatory and inhibitory conductances solely from the analysis of Vm activity. We test this method by calculating spike-triggered averages of synaptic conductances using numerical simulations of the integrate-and-fire model subject to colored conductance noise. The procedure was also tested successfully in biological cortical neurons using conductance noise injected with dynamic-clamp. This method should allow the extraction of synaptic conductances from Vm recordings in vivo.

قيم البحث

اقرأ أيضاً

In awake animals, the activity of the cerebral cortex is highly complex, with neurons firing irregularly with apparent Poisson statistics. One way to characterize this complexity is to take advantage of the high interconnectivity of cerebral cortex a nd use intracellular recordings of cortical neurons, which contain information about the activity of thousands of other cortical neurons. Identifying the membrane potential (Vm) to a stochastic process enables the extraction of important statistical signatures of this complex synaptic activity. Typically, one estimates the total synaptic conductances (excitatory and inhibitory) but this type of estimation requires at least two Vm levels and therefore cannot be applied to single Vm traces. We propose here a method to extract excitatory and inhibitory conductances (mean and variance) from single Vm traces. This VmT method estimates conductance parameters using maximum likelihood criteria, under the assumption are that synaptic conductances are described by Gaussian stochastic processes and are integrated by a passive leaky membrane. The method is illustrated using models and is tested on guinea-pig visual cortex neurons in vitro using dynamic-clamp experiments. The VmT method holds promises for extracting conductances from single-trial measurements, which has a high potential for in vivo applications.
We study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze novel distributed averaging algorithms which operate exclusively on quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and rely on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocols on quantized values and show that their execution, on any time-invariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value represented as the ratio of two quantized values that is equal to the exact average. We conclude with examples that illustrate the operation, performance, and potential advantages of the proposed algorithms.
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its c onstituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.
We introduce an exactly integrable version of the well-known leaky integrate-and-fire (LIF) model, with continuous membrane potential at the spiking event, the c-LIF. We investigate the dynamical regimes of a fully connected network of excitatory c-L IF neurons in the presence of short-term synaptic plasticity. By varying the coupling strength among neurons, we show that a complex chaotic dynamics arises, characterized by scale free avalanches. The origin of this phenomenon in the c-LIF can be related to the order symmetry breaking in neurons spike-times, which corresponds to the onset of a broad activity distribution. Our analysis uncovers a general mechanism through which networks of simple neurons can be attracted to a complex basin in the phase space.
We show that the local Spike Timing-Dependent Plasticity (STDP) rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDPs polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise weights that exceed a non-zero threshold. We further prove that STDP is a form of loop-regulating plasticity for the case of a linear network comprising random weights drawn from certain distributions. Thus a notable local synaptic learning rule makes a specific prediction about synapses in the brain in which standard STDP is present: that under normal spiking conditions, they should participate in predominantly feed-forward connections at all scales. Our model implies that any deviations from this prediction would require a substantial modification to the hypothesized role for standard STDP. Given its widespread occurrence in the brain, we predict that STDP could also regulate long range synaptic loops among individual neurons across all brain scales, up to, and including, the scale of global brain network topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا