ترغب بنشر مسار تعليمي؟ اضغط هنا

An Information-Theoretic Approach to Network Modularity

97   0   0.0 ( 0 )
 نشر من قبل Etay Ziv
 تاريخ النشر 2004
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Etay Ziv




اسأل ChatGPT حول البحث

Exploiting recent developments in information theory, we propose, illustrate, and validate a principled information-theoretic algorithm for module discovery and resulting measure of network modularity. This measure is an order parameter (a dimensionless number between 0 and 1). Comparison is made to other approaches to module-discovery and to quantifying network modularity using Monte Carlo generated Erdos-like modular networks. Finally, the Network Information Bottleneck (NIB) algorithm is applied to a number of real world networks, including the social network of coauthors at the APS March Meeting 2004.



قيم البحث

اقرأ أيضاً

149 - Bradly Alicea 2013
Cell type (e.g. pluripotent cell, fibroblast) is the end result of many complex processes that unfold due to evolutionary, developmental, and transformational stimuli. A cells phenotype and the discrete, a priori states that define various cell subty pes (e.g. skin fibroblast, embryonic stem cell) are ultimately part of a continuum that may predict changes and systematic variation in cell subtypes. These features can be both observable in existing cellular states and hypothetical (e.g. unobserved). In this paper, a series of approaches will be used to approximate the continuous diversity of gene expression across a series of pluripotent, totipotent, and fibroblast cellular subtypes. We will use a series of previously-collected datasets and analyze them using three complementary approaches: the computation of distances based on the subsampling of diversity, assessing the separability of individual genes for a specific cell line both within and between cell types, and a hierarchical soft classification technique that will assign a membership value for specific genes in specific cell types given a number of different criteria. These approaches will allow us to assess the observed gene-expression diversity in these datasets, as well as assess how well a priori cell types characterize their constituent populations. In conclusion, the application of these findings to a broader biological context will be discussed.
Safely deploying machine learning models to the real world is often a challenging process. Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere, agents trained in a simulation ca n struggle to adapt when deployed in the real world or novel environments, and neural networks that are fit to a subset of the population might carry some selection bias into their decision process. In this work, we describe the problem of data shift from a novel information-theoretic perspective by (i) identifying and describing the different sources of error, (ii) comparing some of the most promising objectives explored in the recent domain generalization, and fair classification literature. From our theoretical analysis and empirical evaluation, we conclude that the model selection procedure needs to be guided by careful considerations regarding the observed data, the factors used for correction, and the structure of the data-generating process.
In this paper we propose network methodology to infer prognostic cancer biomarkers based on the epigenetic pattern DNA methylation. Epigenetic processes such as DNA methylation reflect environmental risk factors, and are increasingly recognised for t heir fundamental role in diseases such as cancer. DNA methylation is a gene-regulatory pattern, and hence provides a means by which to assess genomic regulatory interactions. Network models are a natural way to represent and analyse groups of such interactions. The utility of network models also increases as the quantity of data and number of variables increase, making them increasingly relevant to large-scale genomic studies. We propose methodology to infer prognostic genomic networks from a DNA methylation-based measure of genomic interaction and association. We then show how to identify prognostic biomarkers from such networks, which we term `network community oncomarkers. We illustrate the power of our proposed methodology in the context of a large publicly available breast cancer dataset.
183 - Simon Fu 2009
Both external environmental selection and internal lower-level evolution are essential for an integral picture of evolution. This paper proposes that the division of internal evolution into DNA/RNA pattern formation (genotype) and protein functional action (phenotype) resolves a universal conflict between fitness and evolvability. Specifically, this paper explains how this universal conflict drove the emergence of genotype-phenotype division, why this labor division is responsible for the extraordinary complexity of life, and how the specific ways of genotype-phenotype mapping in the labor division determine the paths and forms of evolution and development.
The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfE MP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-{alpha} (DBL{alpha}) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBL{alpha} classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا