ترغب بنشر مسار تعليمي؟ اضغط هنا

Antiproton transfer from antiprotonic Helium to noble gas contaminants

93   0   0.0 ( 0 )
 نشر من قبل Alex
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G.V. Margagliotti




اسأل ChatGPT حول البحث

The state dependent quenching mechanism of metastable antiprotonic He atoms by contaminants is suggested to explain existing experimental data. The effect of antiproton transfer from the antiprotonic He to noble gas contaminants is shown to play a significant role. Preliminary estimations have been done in the framework of the coupled channels model. The obtained results support the idea of strong dependence of quenching cross-sections on the antiprotonic states quantum numbers and enable to explain qualitatively existing discrepancies between experimental results, obtained for different contaminant densities. New observable effects are predicted.



قيم البحث

اقرأ أيضاً

301 - D.Gotta , K.Rashid , B.Fricke 2008
The onset of antiprotonic X-ray transitions at high principal quantum numbers and the occurence of electronic X-rays in antiprotonic argon, krypton, and xenon has been analyzed with the help of Multiconfiguration Dirac-Fock calculations. The shell-by -shell ionisation by Auger electron emission, characterised by appearance and disappearance of X-ray lines, is followed through the antiprotonic cascade by considering transition and binding energies of both the antiproton and the remaining electrons. Electronic lines could be attributed partly to specific states of the antiprotonic atom de-excitation.
Lifetimes of complexes formed during helium-hydrocarbon collisions at low temperature are estimated for symmetric top hydrocarbons. The lifetimes are obtained using a density-of-states approach. In general the lifetimes are less than 10-100 ns, and a re found to decrease with increasing hydrocarbon size. This suggests that clustering will not limit precision spectroscopy in helium buffer gas experiments. Lifetimes are computed for noble-gas benzene collisions and are found to be in reasonable agreement with lifetimes obtained from classical trajectories as reported by Cui {it et al}.
We report on an experiment at the Paul Scherrer Institute, Villigen, Switzerland measuring x rays from muon transfer from deuterium to helium. Both the ground state transfer via the exotic dmu3,4He* molecules and the excited state transfer from mud* were measured. The use of CCD detectors allowed x rays from 1.5 keV to 11 keV to be detected with sufficient energy resolution to separate the transitions to different final states in both deuterium and helium. The x-ray peaks of the dmu3He* and dmu4He* molecules were measured with good statistics. For the D2+3He mixture, the peak has its maximum at E_dmu3He = 6768 +- 12 eV with FWHM Gamma_dmu3He = 863 +- 10 eV. Furthermore the radiative branching ratio was found to be kappa_dmu3He = 0.301 +- 0.061. For the D_2+4He mixture, the maximum of the peak lies at E_dmu4He = 6831 +- 8 eV and the FWHM is Gamma_dmu4He = 856 +- 10 eV. The radiative branching ratio is kappa_dmu4He = 0.636 +- 0.097. The excited state transfer is limited by the probability to reach the deuterium ground state, q_1s. This coefficient was determined for both mixtures: q^3He_1s = 68.9 +- 2.7% and q^4He_1s = 90.1 +- 1.5.
We present a fully {it ab initio}, non-perturbative, time-dependent approach to describe single and double ionization of helium by proton and antiproton impact. A flexible and accurate finite-element discrete-variable-representation is applied to dis cretize the problem on the radial grid in spherical coordinates. Good agreement with the most recent experimental data for absolute angle-integrated cross sections is obtained over a wide range of incident projectile energies between 3 keV and 6 MeV. Furthermore, angle-differential cross sections for two-electron ejection are predicted for a proton impact energy of 6 MeV. Finally, the time evaluation of the ionization process is portrayed by displaying the electron density as a function of the projectile location.
98 - M. Aladi , R. Bolla , P. Racz 2015
We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certa in value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا