ترغب بنشر مسار تعليمي؟ اضغط هنا

Test of CsI(Tl) crystals for the Dark Matter Search

70   0   0.0 ( 0 )
 نشر من قبل HongJoo Kim
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Searches for weakly interacting massive particles(WIMP) can be based on the dete ction of nuclear recoil energy in CsI(Tl) crystals. We demonstrate that low energy gamma rays down to few keV is detected with CsI(Tl) crystal detector. A clear peak at 6 keV is observed using X-ray source. Good energy resolution and linearity have been achieved down to X-ray region. In addition, we also show that alpha particles and gamma rays can be clearly separated using the different time characteristics of the crystal.



قيم البحث

اقرأ أيضاً

This paper is devoted to the study of a degradation of CsI(Tl)crystals scintillation characteristics under irradiation with gamma-quanta at the uniformly distributed absorbed dose up to 3700 rad. The sample set consisted of 25 crystals of 30 cm long having a truncated pyramid shape and 30 rectangular crystals of the same length. A large difference in the light output deterioration caused by the radiation was observed for the samples of the same shape. A substantial dependence of the average light output loss from the sample shape is seen as well. On the other hand, the crystals from the same ingot behave very similarly under irradiation.
265 - S. Sweany , W. G. Lynch , K. Brown 2021
To efficiently detect energetic light charged particles, it is common to use arrays of energy-loss telescopes involving two or more layers of detection media. As the energy of the particles increases, thicker layers are usually needed. However, carry ing out measurements with thick-telescopes may require corrections for the losses due to nuclear reactions induced by the incident particles on nuclei within the detector and for the scattering of incident particles out of the detector, without depositing their full energy in the active material. In this paper, we develop a method for measuring such corrections and determine the reaction and out-scattering losses for data measured with the silicon-CsI(Tl) telescopes of the newly developed HiRA10 array. The extracted efficiencies are in good agreement with model predictions using the GEANT4 reaction loss algorithm for Z=1 and Z=2 isotopes. After correcting for the HiRA10 geometry, a general function that describes the efficiencies from the reaction loss in CsI(Tl) crystals as a function of range is obtained.
123 - Xilei Sun , Junguang Lu , Tao Hu 2011
The luminescent properties of CsI(Na) crystals are studied in this report. By using a TDS3054C oscilloscope with a sampling frequency of 5 GS/s, we find out that nuclear recoil signals are dominated by very fast light pulse with a decay time of ~20 n s, while {gamma}-ray signals have a decay time of ~600 ns. The wavelength of nuclear recoil and {gamma}-ray signals are also different. The study of n/{gamma} separation shows that the rejection factor can reach an order of 10-7 with signal efficiency more than 80% at an equivalent electron recoil energy of 20 keV or more. Such a property makes CsI(Na) an ideal candidate for dark matter searches.
96 - Y. Zhu 2019
Scintillating NaI(Tl) crystals are widely used in a large variety of experimental applications. However, for the use as Dark Matter (DM) detectors, such crystals demand a high level of radio-purity, not achievable by means of standard industrial tech niques. One of the main difficulties comes from the presence of potassium that always accompanies sodium in alkali halides. On the other hand, the arguable DM detection by DAMA experiment using NaI(Tl) scintillating crystals requires a reliable verification able to either confirm the existence of DM or rule out the DAMA claim. Ultra-low radioactivity NaI(Tl) crystals, particularly with very low potassium content, are therefore indispensable to overcome the current stalemate in Dark Matter searches. Nonetheless, apart from DAMA-LIBRA experiments, to date, no other experiment has succeeded in building a detector from NaI(Tl) crystals with potassium content of ppb level. This work describes recent results in the preparation of ultra-radio-pure NaI(Tl) crystals using a modified Bridgman method. A double-walled platinum crucible technique has been designed and reliability tests show that 5 ppb of potassium in the NaI(Tl) crystals of 2 and 3 inches in diameter can be achieved starting from NaI powder with potassium content of the order of 10 ppb. The potassium excess is segregated in the tail-side of the as grown ingot where measured potassium concentration is above 20 ppb. The purifying effect of Bridgman growth for larger NaI(Tl) crystals is currently being tested. The work also reports on scintillation parameters of our NaI(Tl) crystals measured in a dedicated setup conceived for naked, hygroscopic crystals. The reproducible and reliable production of ultra-low radioactivity NaI(Tl) crystals reported in this work will hopefully spur the construction of new DM search experiments and, anyway, clarify the controversial DAMA-LIBRA results.
We report a study of CsI(Tl) scintillator to assess its applicability in experiments to search for dark matter particles. Measurements of the mean scintillation pulse shapes due to nuclear and electron recoils have been performed. We find that, as wi th NaI(Tl), pulse shape analysis can be used to discriminate between electron and nuclear recoils down to 4 keV. However, the discrimination factor is typically (10-15)% better than in NaI(Tl) above 4 keV. The quenching factor for caesium and iodine recoils was measured and found to increase from 11% to ~17% with decreasing recoil energy from 60 to 12 keV. Based on these results, the potential sensitivity of CsI(Tl) to dark matter particles in the form of neutralinos was calculated. We find an improvement over NaI(Tl) for the spin independent WIMP-nucleon interactions up to a factor of 5 assuming comparable electron background levels in the two scintillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا