ترغب بنشر مسار تعليمي؟ اضغط هنا

Differing Interactions Require Baryon and Lepton Conservation

259   0   0.0 ( 0 )
 نشر من قبل Ronald Mirman
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Mirman




اسأل ChatGPT حول البحث

Baryon and lepton numbers are conserved. Why? Baryon number must be because baryons are subject to strong interactions, leptons are not. Conservation of baryons leads to that of leptons. This raises further questions which are noted.


قيم البحث

اقرأ أيضاً

In the usual rod and slot paradox, the rod, if it falls, was expected to fall into the slot due to gravity. Many thought experiments have been conducted where the presence of gravity is eliminated with the rod and slot approaching each other along a line joining their centers, whereby the considerations come strictly under Special Relativity. In these experiments the line of motion is not parallel to either the axis of the rod or the slot. In this paper we consider in detail the two cases when the rod does fall into the slot and when the rod does not fall into the slot, each from the perspective of the co-moving frames of the rod and the slot. We show that whether the rod falls into the slot as determined by Galilean kinematics is also valid under relativistic kinematics; this determination does not depend upon the magnitude of the velocity, but only on the proper lengths and the proper angles of the rod and slot with the line of motion. Our conclusion emphasizes the fact that the passing (or crashing) of the rod as a wholesome event is unaffected by relativistic kinematics. We also provide a simple formula to determine whether or not the rod passes through the slot.
The physics responsible for neutrino masses and lepton mixing remains unknown. More experimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutri no masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the status of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos.
We describe a unique gravitational wave signature for a class of models with a vast hierarchy between the symmetry breaking scales. The unusual shape of the signal is a result of the overlapping contributions to the stochastic gravitational wave back ground from cosmic strings produced at a high scale and a cosmological phase transition at a low scale. We apply this idea to a simple model with gauged baryon and lepton number, in which the high-scale breaking of lepton number is motivated by the seesaw mechanism for the neutrinos, whereas the low scale of baryon number breaking is required by the observed dark matter relic density. The novel signature can be searched for in upcoming gravitational wave experiments.
Baryon number is an accidental symmetry in the standard model, while Peccei-Quinn symmetry is hypothetical symmetry which is introduced to solve the strong CP problem. We study the possible connections between Peccei-Quinn symmetry and baryon number symmetry. In this framework, an axion is identified as the Nambu-Goldstone boson of baryon number violation. As a result, characteristic baryon number violating processes are predicted. We developed the general method to determine the baryon number and lepton number of new scalar in the axion model.
42 - Amaury Mouchet 2015
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditio ns under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noethers approach is illustrated on several examples, including classical field theory and quantum dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا