ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of Polarization Squeezing with Periodically Poled KTP at 1064 nm

82   0   0.0 ( 0 )
 نشر من قبل Mikael Lassen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the experimental demonstration of directly produced polarization squeezing at 1064 nm from a type I optical parametric amplifier (OPA) based on a periodically poled KTP crystal (PPKTP). The orthogonal polarization modes of the polarization squeezed state are both defined by the OPA cavity mode, and the birefringence induced by the PPKTP crystal is compensated for by a second, but inactive, PPKTP crystal. Stokes parameter squeezing of 3.6 dB and anti squeezing of 9.4 dB is observed.

قيم البحث

اقرأ أيضاً

We report on the generation of a stable continuous-wave low-frequency squeezed vacuum field with a squeezing level of $3.8pm0.1$ dB at 1064 nm, the wavelength at which laser interferometers for gravitational wave (GW) detection operate, using periodi cally poled KTiOPO$_4$ (PPKTP) in a sub-threshold optical parametric oscillator. PPKTP has the advantages of higher nonlinearity, smaller intra-crystal and pump-induced seed absorption, user-specified parametric down-conversion temperature, wider temperature tuning range, and lower susceptibility to thermal lensing over alternative nonlinear materials such as MgO doped or periodically poled LiNbO$_3$, and is, therefore, an excellent material for generation of squeezed vacuum fields for application to laser interferometers for GW detection.
We report generation of squeezed vacuum in sideband modes of continuous-wave light at 946 nm using a periodically poled KTiOPO_4 crystal in an optical parametric oscillator. At the pump power of 250 mW, we observe the squeezing level of -5.6+/-0.1 dB and the anti-squeezing level of +12.7+/-0.1 dB. The pump power dependence of the observed squeezing/anti-squeezing levels agrees with the theoretically calculated values when the phase fluctuation of locking is taken into account.
Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for example used for quantum state generation and frequency conversion, their material properties at low temperatures are largely unstudied. Here, we demonstrate the first second harmonic generation in a fiber-coupled lithium niobate waveguide at temperatures down to 4.4K. We observe a reproducible shift in the phase-matched pump wavelength within the telecom band, in addition to transient discontinuities while temperature cycling. Our results establish lithium niobate as a versatile nonlinear photonic integration platform compatible with cryogenic quantum technologies.
Lithium niobate (LN), dubbed by many as the silicon of photonics, has recently risen to the forefront of chip-scale nonlinear optics research since its demonstration as an ultralow-loss integrated photonics platform. Due to its significant quadratic nonlinearity ($chi^{(2)}$), LN inspires many important applications such as second-harmonic generation (SHG), spontaneous parametric down-conversion, and optical parametric oscillation. Here, we demonstrate high-efficiency SHG in dual-resonant, periodically poled z-cut LN microrings, where quasi-phase matching is realized by field-assisted domain engineering. Meanwhile, dual-band operation is accessed by optimizing the coupling conditions in fundamental and second-harmonic bands via a single pulley waveguide. As a result, when pumping a periodically poled LN microring in the low power regime at around 1617nm, an on-chip SHG efficiency of 250,000%/W is achieved, a state-of-the-art value reported among current integrated photonics platforms. An absolute conversion efficiency of 15% is recorded with a low pump power of 115$mu$W in the waveguide. Such periodically poled LN microrings also present a versatile platform for other cavity-enhanced quasi-phase matched $chi^{(2)}$ nonlinear optical processes.
Optical waveguides made from periodically poled materials provide high confinement of light and enable the generation of new wavelengths via quasi-phase-matching, making them a key platform for nonlinear optics and photonics. However, such devices ar e not typically employed for high-harmonic generation. Here, using 200-fs, 10-nJ-level pulses of 4100 nm light at 1 MHz, we generate high harmonics up to the 13th harmonic (315 nm) in a chirped, periodically poled lithium niobate (PPLN) waveguide. Total conversion efficiencies into the visible--ultraviolet region are as high as 10 percent. We find that the output spectrum depends on the waveguide poling period, indicating that quasi-phase-matching plays a significant role. In the future, such periodically poled waveguides may enable compact sources of ultrashort pulses at high repetition rates and provide new methods of probing the electronic structure of solid-state materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا