ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

47   0   0.0 ( 0 )
 نشر من قبل Kevin McCarty
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment.



قيم البحث

اقرأ أيضاً

50 - A. Pocar 2005
Borexino is an organic liquid scintillator underground detector for low energy solar neutrinos. The experiment has to satisfy extremely stringent low background requirements. The thin nylon spherical scintillator containment vessel has to meet cleanl iness and low radioactivity levels second only, within the detector, to the scintillator itself. Overall, the background from the vessel in the fiducial volume of the detector must be kept at the level of one event per day or better. The requirements, design choices, results from laboratory tests, and fabrication techniques that have been adopted to meet this goal are presented. Details of the precautions taken during the installation of the vessels inside the Borexino detector are also discussed.
The KamLAND-Zen 800 experiment is searching for the neutrinoless double-beta decay of $^{136}$Xe by using $^{136}$Xe-loaded liquid scintillator. The liquid scintillator is enclosed inside a balloon made of thin, transparent, low-radioactivity film th at we call Inner Balloon (IB). The IB, apart from guaranteeing the liquid containment, also allows to minimize the background from cosmogenic muon-spallation products and $^{8}$B solar neutrinos. Indeed these events could contribute to the total counts in the region of interest around the Q-value of the double-beta decay of $^{136}$Xe. In this paper, we present an overview of the IB and describe the various steps of its commissioning minimizing the radioactive contaminations, from the material selection, to the fabrication of the balloon and its installation inside the KamLAND detector. Finally, we show the impact of the IB on the KamLAND background as measured by the KamLAND detector itself.
Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.
149 - S. Mufson , B. Baugh , C. Bower 2015
The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvAs performance requireme nts. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.
The antineutrino detectors in the Daya Bay reactor neutrino experiment are liquid scintillator detectors designed to detect low energy particles from antineutrino interactions with high efficiency and low backgrounds. Since the antineutrino detector will be installed in a water Cherenkov cosmic ray veto detector and will run for 3 to 5 years, ensuring water tightness is critical to the successful operation of the antineutrino detectors. We choose a special method to seal the detector. Three leak checking methods have been employed to ensure the seal quality. This paper will describe the sealing method and leak testing results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا