ﻻ يوجد ملخص باللغة العربية
A rigorous mathematical proof is given of a class of vector identities that provide a way to separate an arbitrary vector field (over a linear space) into the sum of a radial (i.e., pointing toward the radial unit vector) vector field, minus the divergence of a tensor plus the curl of an axial vector. Such a separation is applied to the representation of electric current densities yielding a specific form of the effective polarization and magnetization fields which is also discussed in some details.
In the watt balance experiments, separate measurements of the magnetic and electromotive forces in a coil in a magnetic field enable a virtual comparison between mechanical and electric powers to be carried out, which lead to an accurate measurement
The inverse problem for electromagnetic field produced by arbitrary altered charge distribution in dipole approximation is solved. The charge distribution is represented by its dipole moment. It is assumed that the spectral properties of magnetic fie
The fact that repulsive Rutherford scattering casts a paraboloidal shadow is rarely exploited in introductory mechanics textbooks. Another rarely used construction in such textbooks is the Hamilton vector, a cousin of the more famous Laplace-Runge-Le
A proof is given of the vector identity proposed by Gubarev, Stodolsky and Zakarov that relates the volume integral of the square of a 3-vector field to non-local integrals of the curl and divergence of the field. The identity is applied to the case
The aim of this paper is to provide a new class of series identities in the form of four general results. The results are established with the help of generalizatons of the classical Kummers summation theorem obtained earlier by Rakha and Rathie. Res