ﻻ يوجد ملخص باللغة العربية
We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich--club connectivity are preserved. We consider three real networks, the AS--Internet, the protein interaction and the scientific collaboration. We show that for a given degree distribution, the rich--club connectivity is sensitive to the degree--degree correlation, and on the other hand the degree--degree correlation is constrained by the rich--club connectivity. In particular, in the case of the Internet, the assortative coefficient is always negative and a minor change in its value can reverse the networks rich--club structure completely; while fixing the degree distribution and the rich--club connectivity restricts the assortative coefficient to such a narrow range, that a reasonable model of the Internet can be produced by considering mainly the degree distribution and the rich--club connectivity. We also comment on the suitability of using the maximal random network as a null model to assess the rich--club connectivity in real networks.
A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real netw
In network science complex systems are represented as a mathematical graphs consisting of a set of nodes representing the components and a set of edges representing their interactions. The framework of networks has led to significant advances in the
The largest eigenvalue of a networks adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expre
Complex networks have acquired a great popularity in recent years, since the graph representation of many natural, social and technological systems is often very helpful to characterize and model their phenomenology. Additionally, the mathematical to
The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phe