ﻻ يوجد ملخص باللغة العربية
We study the betweenness centrality of fractal and non-fractal scale-free network models as well as real networks. We show that the correlation between degree and betweenness centrality $C$ of nodes is much weaker in fractal network models compared to non-fractal models. We also show that nodes of both fractal and non-fractal scale-free networks have power law betweenness centrality distribution $P(C)sim C^{-delta}$. We find that for non-fractal scale-free networks $delta = 2$, and for fractal scale-free networks $delta = 2-1/d_{B}$, where $d_{B}$ is the dimension of the fractal network. We support these results by explicit calculations on four real networks: pharmaceutical firms (N=6776), yeast (N=1458), WWW (N=2526), and a sample of Internet network at AS level (N=20566), where $N$ is the number of nodes in the largest connected component of a network. We also study the crossover phenomenon from fractal to non-fractal networks upon adding random edges to a fractal network. We show that the crossover length $ell^{*}$, separating fractal and non-fractal regimes, scales with dimension $d_{B}$ of the network as $p^{-1/d_{B}}$, where $p$ is the density of random edges added to the network. We find that the correlation between degree and betweenness centrality increases with $p$.
Self-similarity is a property of fractal structures, a concept introduced by Mandelbrot and one of the fundamental mathematical results of the 20th century. The importance of fractal geometry stems from the fact that these structures were recognized
Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter $q$. We obtain the topological properties o
In this paper, we study traffic dynamics in scale-free networks in which packets are generated with non-homogeneously selected sources and destinations, and forwarded based on the local routing strategy. We consider two situations of packet generatio
We investigate the accumulated wealth distribution by adopting evolutionary games taking place on scale-free networks. The system self-organizes to a critical Pareto distribution (1897) of wealth $P(m)sim m^{-(v+1)}$ with $1.6 < v <2.0$ (which is in
Using data on the Berlin public transport network, the present study extends previous observations of fractality within public transport routes by showing that also the distribution of inter-station distances along routes displays non-trivial power l