ﻻ يوجد ملخص باللغة العربية
The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-9} and 1.5x10^{-10}, respectively. With this stabilization the frequency determination with the Penning trap only shows a linear temporal drift over several hours on the 10 ppb level due to the finite resistance of the superconducting magnet coils.
Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectro
The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-pr
The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers.
The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irr
An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 {mu}T within a five-layer mumetal shield is described. The system is calibrated with reference to magnetic resonance obser