ترغب بنشر مسار تعليمي؟ اضغط هنا

CdSe-single-nanoparticle based active tips for near-field optical microscopy

127   0   0.0 ( 0 )
 نشر من قبل Serge Huant
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method to realize active optical tips for use in near-field optics that can operate at room temperature. A metal-coated optical tip is covered with a thin polymer layer stained with CdSe nanocrystals or nanorods at low density. The time analysis of the emission rate and emission spectra of the active tips reveal that a very small number of particles - possibly down to only one - can be made active at the tip apex. This opens the way to near-field optics with a single inorganic nanoparticle as a light source.

قيم البحث

اقرأ أيضاً

We report near-field scanning optical imaging with an active tip made of a single fluorescent CdSe nanocrystal attached at the apex of an optical tip. Although the images are acquired only partially because of the random blinking of the semiconductor particle, our work validates the use of such tips in ultra-high spatial resolution optical microscopy.
We introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching). This is obtained by grafting in a controlled way a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we image metallic nanostructures in the near-field, thereby achieving a near-field scanning single-photon microscopy working at room temperature on the long term. Our work may be of importance to various emerging fields of nanoscience where an accurate positioning of a quantum emitter is required such as for example quantum plasmonics.
317 - Raphael Marchand 2021
Imaging dynamical processes at interfaces and on the nanoscale is of great importance throughout science and technology. While light-optical imaging techniques often cannot provide the necessary spatial resolution, electron-optical techniques damage the specimen and cause dose-induced artefacts. Here, Optical Near-field Electron Microscopy (ONEM) is proposed, an imaging technique that combines non-invasive probing with light, with a high spatial resolution read-out via electron optics. Close to the specimen, the optical near-fields are converted into a spatially varying electron flux using a planar photocathode. The electron flux is imaged using low energy electron microscopy, enabling label-free nanometric resolution without the need to scan a probe across the sample. The specimen is never exposed to damaging electrons.
Scattering-type scanning near-field optical microscopy (s-SNOM) is instrumental in exploring polaritonic behaviors of two-dimensional (2D) materials at the nanoscale. A sharp s-SNOM tip couples momenta into 2D materials through phase matching to exci te phonon polaritons, which manifest as nanoscale interference fringes in raster images. However, s-SNOM lacks the ability to detect the progression of near-field property along the perpendicular axis to the surface. Here, we perform near-field analysis of a micro-disk and a reflective edge made of isotopically pure hexagonal boron nitride (h-11BN), by using three-dimensional near-field response cubes obtained by peak force scattering-type near-field optical microscopy (PF-SNOM). Momentum quantization of polaritons from the confinement of the circular structure is revealed in situ. Moreover, tip-sample distance is found to be capable of fine-tuning the momentum of polaritons and modifying the superposition of quantized polaritonic modes. The PF-SNOM-based three-dimensional near-field analysis provides detailed characterization capability with a high spatial resolution to fully map three-dimensional near-fields of nano-photonics and polaritonic structures.
We have implemented three different optical methods to quantitatively assess the thickness of thin GaSe flakes transferred on both transparent substrates, like Gel-Film, or SiO2/Si substrates. We show how their apparent color can be an efficient way to make a quick rough estimation of the thickness of the flakes. This method is more effective for SiO2/Si substrates as the thickness dependent color change is more pronounced on these substrates than on transparent substrates. On the other hand, for transparent substrates, the transmittance of the flakes in the blue region of the visible spectrum can be used to estimate the thickness. We find that the transmittance of flakes in the blue part of the spectrum decreases at a rate of 1.2%/nm. On SiO2/Si, the thickness of the flakes can be accurately determined by fitting optical contrast spectra to a Fresnel law-based model. Finally, we also show how the quantitative analysis of transmission mode optical microscopy images can be a powerful method to quickly probe the environmental degradation of GaSe flakes exposed to aging conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا