ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Small Para-Hydrogen Clusters: Magic Numbers and Superfluid Sizes

383   0   0.0 ( 0 )
 نشر من قبل Saad Khairallah
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between magic number stabilities and superfluidity of small para-hydrogen clusters with sizes $N = 5$ to 40 and temperatures $0.5 K leq T leq 4.5 $K is explored with classical and quantum Path Integral Monte Carlo calculations. Clusters with $N < 26$ and T $leq 1.5 K$ have large superfluid fractions even at the stable magic numbers 13, 19, and 23. In larger clusters, superfluidity is quenched especially at the magic numbers 23, 26, 29, 32, and 37 while below 1 K, superfluidity is recovered for the pairs $(27,28)$, $(30,31)$, and $(35,36)$. For all clusters superfluidity is localized at the surface and correlates with long exchange cycles involving loosely bound surface molecules.



قيم البحث

اقرأ أيضاً

We present a systematic study of the photo-absorption spectra of various Si$_{n}$H$_{m}$ clusters (n=1-10, m=1-14) using the time-dependent density functional theory (TDDFT). The method uses a real-time, real-space implementation of TDDFT involving f ull propagation of the time dependent Kohn-Sham equations. Our results for SiH$_{4}$ and Si$_{2}$H$_{6}$ show good agreement with the earlier calculations and experimental data. We find that for small clusters (n<7) the photo-absorption spectrum is atomic-like while for the larger clusters it shows bulk-like behaviour. We study the photo-absorption spectra of silicon clusters as a function of hydrogenation. For single hydrogenation, we find that in general, the absorption optical gap decreases and as the number of silicon atoms increase the effect of a single hydrogen atom on the optical gap diminishes. For further hydrogenation the optical gap increases and for the fully hydrogenated clusters the optical gap is larger compared to corresponding pure silicon clusters.
Clusters of para-hydrogen (pH2) have been predicted to exhibit superfluid behavior, but direct observation of this phenomenon has been elusive. Combining experiments and theoretical simulations, we have determined the size evolution of the superfluid response of pH2 clusters doped with carbon dioxide (CO2). Reduction of the effective inertia is observed when the dopant is surrounded by the pH2 solvent. This marks the onset of molecular superfluidity in pH2. The fractional occupation of solvation rings around CO2 correlates with enhanced superfluid response for certain cluster sizes.
A structural study of the smaller Li$^+$He$_n$ clusters with $nle30$ has been carried out using different theoretical methods. The structures and the energetics of the clusters have been obtained using both classical energy minimization methods and q uantum Diffusion Monte Carlo. The total interaction acting within the clusters has been obtained as a sum of pairwise potentials: Li$^+$-He and He-He. This approximation had been shown in our earlier study cite{8} to give substantially correct results for energies and geometries once compared to full ab-initio calculations. The general features of the spatial structures, and their energetics, are discussed in details for the clusters up to $n=30$ and the first solvation shell is shown to be essentially completed by the first ten helium atoms.
There has long been a discrepancy between the size distributions of Ar$_n^+$ clusters measured by different groups regarding whether or not magic numbers appear at sizes corresponding to the closure of icosahedral (sub-)shells. We show that the previ ously observed magic cluster size distributions are likely the result of an unresolved Ar$_n$H$^+$ component, that is, from protonated argon clusters. We find that the proton impurity gives cluster geometries that are much closer to those for neutral rare gas clusters, which are known to form icosahedral structures, than the pure cationic clusters, explaining why the mass spectra from protonated argon clusters better matches these structural models. Our results thus show that even small impurities, e.g. a single proton, can significantly influence the properties of clusters.
231 - K. Kokko , A. Nagy , J. Huhtala 2020
Using a hydrogen molecule as a test system we demonstrate how to compute the effective potential according to the formalism of the new density functional theory (DFT), in which the basic variable is the set of spherically averaged densities instead o f the total density, used in the traditional DFT. The effective potential together the external potential, nuclear Coulomb potential, can be substituted in the Schrodinger like differential equation to obtain the spherically averaged electron density of the system. In the new method instead of one three-dimensional low symmetry equation one has to solve as many spherically symmetric equations as there are atoms in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا