ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetophoresis of ferrofluid in microchannel system and its nonlinear effect

191   0   0.0 ( 0 )
 نشر من قبل Yuchuan Jian
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. C. Jian




اسأل ChatGPT حول البحث

We have studied the magnetophoretic particle separation and its nonlinear behavior of ferrofluids in microchannel which is proposed by Furlani. The magnetic gradient force is caused by an bias field and the polarized magnets and is found to be spatially uniform in the channel section which can be used for particle selecting or separation. We have derived the equations of nonlinear magnetization of magnetic particles which cause the harmonics of magnetophoresis. The Langevin model and generalized Clausius-Mossotti equation used show how the normal and longitude anomalous anisotropic effect the permeability of ferrofluids, thus the magnetic force. Our analysis demonstrates the viability of using the microchannel system for various bioapplications and other characterization of fluid transporting and the time-varying magnetic field can be potentially used for an integrated magnetometer and influences the the viscosity and effective permeability in ferrofluids.

قيم البحث

اقرأ أيضاً

102 - Y. C. Jian 2006
Taking into account the structural transition and long-range interaction (lattice effect), we resort to the Ewald-Kornfeld formulation and developed Maxwell-Garnett theory for uniaxially anisotropic suspensions to calculate the effective permeability of inverse ferrofluids. And we also consider the effect of volume fraction to the magnetophoretic force on the nonmagnetic spherical particles submerged in ferrofluids in the presence of nonuniform magnetic field. We find that the coupling of ac and dc field case can lead to fundamental and third harmonic response in the effective magnetophoresis and changing the aspect ratio in both prolate and oblate particles can alter the harmonic and nonharmonic response and cause the magnetophoretic force vanish.
In the molecular dynamics calculations for the free energy of ions and ionic molecules, we often encounter wet charged molecular systems where electrical neutrality condition is broken. This causes a problem in the evaluation of electrostatic interac tion under periodic boundary condition. A standard remedy for the problem is to consider a hypothetical homogeneous background charge density to neutralize the total system. Here, we present a new expression for the evaluation of electrostatic interactions for the system including the background charge by fast multipole method (FMM). Further, an efficient scheme to evaluate solute-solvent interaction energy by FMM has been developed to reduce the computation of far-field part. We have calculated hydration free energy of ions, Mg$^{2+}$, Na$^{+}$, and Cl$^{-}$ dissolved in neutral solvent using the new expression. The calculated free energy showed a good agreement with the result using well-established particle mesh Ewald method, demonstrating the validity of the present expression in the framework of FMM. An advantage of the present scheme is in an efficient free energy calculation of a large-scale charged systems (particularly over million particles) based on highly parallel computations.
57 - Y. Gao , Y. C. Jian , L. F. Zhang 2006
Ferrofluids containing nonmagnetic particles are called inverse ferrofluids. On the basis of the Ewald-Kornfeld formulation and the Maxwell-Garnett theory, we theoretically investigate the magnetophoretic force exerting on the nonmagnetic particles i n inverse ferrofluids due to the presence of a nonuniform magnetic field, by taking into account the structural transition and long-range interaction. We numerically demonstrate that the force can be adjusted by choosing appropriate lattices, volume fractions, geometric shapes, and conductivities of the nonmagnetic particles, as well as frequencies of external magnetic fields.
We analyse the effects of environmental noise in three different biological systems: (i) mating behaviour of individuals of emph{Nezara viridula} (L.) (Heteroptera Pentatomidae); (ii) polymer translocation in crowded solution; (iii) an ecosystem desc ribed by a Verhulst model with a multiplicative L{e}vy noise.
The quantum dynamics of transport networks in the presence of noisy environments have recently received renewed attention with the discovery of long-lived coherences in different photosynthetic complexes. This experimental evidence has raised two fun damental questions: Firstly, what are the mechanisms supporting long-lived coherences and secondly, how can we assess the possible functional role that the interplay of noise and quantum coherence might play in the seemingly optimal operation of biological systems under natural conditions? Here we review recent results, illuminate them at the hand of two paradigmatic systems, the Fenna-Matthew-Olson (FMO) complex and the light harvesting complex LHII, and present new progress on both questions. In particular we introduce the concept of the phonon antennae and discuss the possible microscopic origin or long-lived electronic coherences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا