ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Morphology on the Optical Properties of Metal Nanoparticles

102   0   0.0 ( 0 )
 نشر من قبل Cecilia Noguez Dr
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of morphology on the optical properties of silver nanoparticles is studied. A general relationship between the surface plasmon resonances and the morphology of each nanoparticle is established. The optical response is investigated for cubes and decahedrons with different truncations. We found that polyhedral nanoparticles composed with less faces show more surface plasmon resonances than spherical-like ones. It is also observed that the vertices of the nanoparticles play an important role in the optical response, because the sharpener they become, the greater the number of resonances. For all the nanoparticles, a main resonance with a dipolar character was identified as well as other secondary resonances of less intensity. It is also found that as the nanoparticle becomes more symmetric, the main resonance is always blue shifted.

قيم البحث

اقرأ أيضاً

161 - Cecilia Noguez 2004
A review of the main phenomena related with the linear optical properties of isolated and supported metal nanoparticles is presented. The extinction, absorption and scattering efficiencies are calculated using the Mie theory and the Discrete Dipole A pproximation. The origin of the optical spectra is discussed in terms of the size, shape and environment for each nanoparticle. The main optical features of each nanoparticle are identified, showing the tremendous potentiality of optical spectroscopy as a tool of characterization.
A new mechanism for reactivity of multiply twinned gold nanoparticles resulting from their inherently strained structure provides a further explanation of the surprising catalytic activity of small gold nanoparticles. Atomic defect structural studies of surface strains and quantitative analysis of atomic column displacements in the decahedral structure observed by aberration corrected transmission electron microscopy reveal an average expansion of surface nearest neighbor distances of 5.6 percent, with many strained by more than 10 percent. Density functional theory calculations of the resulting modified gold d-band states predict significantly enhanced activity for carbon monoxide oxidation. The new insights have important implications for the applications of nanoparticles in chemical process technology, including for heterogeneous catalysis.
Photoelectron spectroscopy experiments in ionic solutions reveal important electronic structure information, in which the interaction between hydrated ions and water solvent can be inferred. Based on many-body perturbation theory with GW approximatio n, we theoretically compute the quasiparticle electronic structure of chloride anion solution, which is modeled by path-integral $ab$ $initio$ molecular dynamics simulation by taking account the nuclear quantum effects (NQEs). The electronic levels of hydrated anion as well as water are determined and compared to the recent experimental photoelectron spectra. It is found that NQEs improve the agreement between theoretical prediction and experiment because NQEs effectively weaken the hybridization of the between the $rm Cl^-$ anion and water. Our study indicates that NQEs plays a small but non-negligible role in predicting the electronic structure of the aqueous solvation of ions of the Hofmeister series.
We present semiempirical tight binding calculations on thienylenevinylene oligomers up to the hexadecamer stage (n=16) and ab initio calculations based on the local density approximation up to n=8. The results correctly describe the experimental vari ations of the gap versus size, the optical spectra, and the electrochemical redox potentials. We propose a simple model to deduce from the band structure of the polymer chain the electronic states of the oligomers close to the gap. We analyze the evolution of the gap as a function of the torsion angle between consecutive cells: the modifications are found to be small up to a ~30^{circ}; angle. We show that these oligomers possess extensive pi-electron delocalization along the molecular backbone which makes them interesting for future electronic applications such as molecular wires.
We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of $1$-$2$ nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, N ip$^-$(nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the Au-NPs: while sodium and some of the anions (e.g., Cl$^-$, HCF$^{3-}$) adsorb more at the `edgy (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF$_4$$^-$, PF$_6$$^-$, Nip$^-$) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip$^-$, which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially-resolved electrostatic potentials, as well as the far-field effective electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Huckel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between effective surface charge and potential. We find for all salts negative effective surface potentials in the range from $-10$ mV for NaCl down to about $-80$ mV for NaNip, consistent with typical experimental ranges for the zeta-potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the $pm 0.5$ V range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا