ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Magnetization Inhomogeneity on Magnetic Microtraps for Atoms

57   0   0.0 ( 0 )
 نشر من قبل Shannon Whitlock
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the origin of fragmentation of ultracold atoms observed on a permanent magnetic film atom chip. A novel technique is used to characterize small spatial variations of the magnetic field near the film surface using radio frequency spectroscopy of the trapped atoms. Direct observations indicate the fragmentation is due to a corrugation of the magnetic potential caused by long range inhomogeneity in the film magnetization. A model which takes into account two-dimensional variations of the film magnetization is consistent with the observations.



قيم البحث

اقرأ أيضاً

We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm$^2$. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 $mu$m from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chi ps enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 $mu$m, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold $^{87}$Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
We present a method of transferring a cold atom between spatially separated microtraps by means of a Raman transition between the ground motional states of the two traps. The intermediate states for the Raman transition are the vibrational levels of a third microtrap, and we determine the experimental conditions for which the overlap of the wave functions leads to an efficient transfer. There is a close analogy with the Franck-Condon principle in the spectroscopy of molecules. Spin-dependent manipulation of neutral atoms in microtraps has important applications in quantum information processing. We also show that starting with several atoms, precisely one atom can be transferred to the final potential well hence giving deterministic preparation of single atoms.
We observe a density-dependent collective suppression of optical pumping between the hyperfine ground states in an array of submicrometer-sized clouds of cold rubidium atoms. The suppressed Raman transition rate can be explained by strong resonant di pole-dipole interactions that are enhanced by increasing atom density. The observations are consistent with stochastic electrodynamics simulations that incorporate the effects of the nonlinear population transfer via internal atomic levels embedded in a coupled-dipole model.
510 - I. Herrera , Y. Wang , P. Michaux 2014
We report on the design, fabrication and characterization of magnetic nanostructures to create a lattice of magnetic traps with sub--micron period for trapping ultracold atoms. These magnetic nanostructures were fabricated by patterning a Co/Pd multi layered magnetic film grown on a silicon substrate using high precision e-beam lithography and reactive ion etching. The Co/Pd film was chosen for its small grain size and high remanent magnetization and coercivity. The fabricated structures are designed to magnetically trap $^{87}$Rb atoms above the surface of the magnetic film with 1D and 2D (triangular and square) lattice geometries and sub-micron period. Such magnetic lattices can be used for quantum tunneling and quantum simulation experiments, including using geometries and periods that may be inaccessible with optical lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا