ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Assembly of Information in Networks

147   0   0.0 ( 0 )
 نشر من قبل Martin Rosvall
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model self-assembly of information in networks to investigate necessary conditions for building a global perception of a system by local communication. Our approach is to let agents chat in a model system to self-organize distant communication-pathways. We demonstrate that simple local rules allow agents to build a perception of the system, that is robust to dynamical changes and mistakes. We find that messages are most effectively forwarded in the presence of hubs, while transmission in hub-free networks is more robust against misinformation and failures.



قيم البحث

اقرأ أيضاً

Existing information-theoretic frameworks based on maximum entropy network ensembles are not able to explain the emergence of heterogeneity in complex networks. Here, we fill this gap of knowledge by developing a classical framework for networks base d on finding an optimal trade-off between the information content of a compressed representation of the ensemble and the information content of the actual network ensemble. In this way not only we introduce a novel classical network ensemble satisfying a set of soft constraints but we are also able to calculate the optimal distribution of the constraints. We show that for the classical network ensemble in which the only constraints are the expected degrees a power-law degree distribution is optimal. Also, we study spatially embedded networks finding that the interactions between nodes naturally lead to non-uniform spread of nodes in the space, with pairs of nodes at a given distance not necessarily obeying a power-law distribution. The pertinent features of real-world air transportation networks are well described by the proposed framework.
89 - M. Rosvall , K. Sneppen 2005
This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liars
We study a mechanism of activity sustaining on networks inspired by a well-known model of neuronal dynamics. Our primary focus is the emergence of self-sustaining collective activity patterns, where no single node can stay active by itself, but the a ctivity provided initially is sustained within the collective of interacting agents. In contrast to existing models of self-sustaining activity that are caused by (long) loops present in the network, here we focus on tree--like structures and examine activation mechanisms that are due to temporal memory of the nodes. This approach is motivated by applications in social media, where long network loops are rare or absent. Our results suggest that under a weak behavioral noise, the nodes robustly split into several clusters, with partial synchronization of nodes within each cluster. We also study the randomly-weighted version of the models where the nodes are allowed to change their connection strength (this can model attention redistribution), and show that it does facilitate the self-sustained activity.
306 - Yukio Hayashi 2017
Todays economy, production activity, and our life are sustained by social and technological network infrastructures, while new threats of network attacks by destructing loops have been found recently in network science. We inversely take into account the weakness, and propose a new design principle for incrementally growing robust networks. The networks are self-organized by enhancing interwoven long loops. In particular, we consider the range-limited approximation of linking by intermediations in a few hops, and show the strong robustness in the growth without degrading efficiency of paths. Moreover, we demonstrate that the tolerance of connectivity is reformable even from extremely vulnerable real networks according to our proposed growing process with some investment. These results may indicate a prospective direction to the future growth of our network infrastructures.
We perform an analytical analysis of the long-range degree correlation of the giant component in an uncorrelated random network by employing generating functions. By introducing a characteristic length, we find that a pair of nodes in the giant compo nent is negatively degree-correlated within the characteristic length and uncorrelated otherwise. At the critical point, where the giant component becomes fractal, the characteristic length diverges and the negative long-range degree correlation emerges. We further propose a correlation function for degrees of the $l$-distant node pairs, which behaves as an exponentially decreasing function of distance in the off-critical region. The correlation function obeys a power-law with an exponential cutoff near the critical point. The ErdH{o}s-R{e}nyi random graph is employed to confirm this critical behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا