ﻻ يوجد ملخص باللغة العربية
While the alignment and rotation of microparticles in optical traps have received increased attention recently, one of the earliest examples has been almost totally neglected the alignment of particles relative to the beam axis, as opposed to about the beam axis. However, since the alignment torques determine how particles align in a trap, they are directly relevant to practical applications. Lysozyme crystals are an ideal model system to study factors determining the orientation of nonspherical birefringent particles in a trap. Both their size and their aspect ratio can be controlled by the growth parameters, and their regular shape makes computational modeling feasible. We show that both external shape and internal birefringence anisotropy contribute to the alignment torque. Three-dimensionally trapped elongated objects either align with their long axis parallel or perpendicular to the beam axis depending on their size. The shape-dependent torque can exceed the torque due to birefringence, and can align negative uniaxial particles with their optic axis parallel to the electric field, allowing an application of optical torque about the beam axis.
We report on the observation and measurement of the transfer of transverse angular momentum to birefringent particles several wavelengths in size. A trapped birefringent particle is much larger than the nano-particles systems for which transverse ang
We investigate the dynamics of high aspect ratio nanowires trapped axially in a single gradient force optical tweezers. A power spectrum analysis of the Brownian dynamics reveals a broad spectral resonance of the order of a kHz with peak properties t
The preparation of a mechanical oscillator driven by quantum back-action is a fundamental requirement to reach the standard quantum limit (SQL) for force measurement, in optomechanical systems. However, thermal fluctuating force generally dominates a
The dynamics of an optically trapped particle are often determined by measuring intensity shifts of the back-scattered light from the particle using position sensitive detectors. We present a technique which measures the phase of the back-scattered l
Subwavelength dielectric structures offer an attractive low loss alternative to plasmonic structures for the development of resonant optics functionality such as metamaterials. Nonspherical like rectangular structures are of most interest from the st