ﻻ يوجد ملخص باللغة العربية
We propose a new model of turbulence for use in large-eddy simulations (LES). The turbulent force, represented here by the turbulent Lamb vector, is divided in two contributions. The contribution including only subfilter fields is deterministically modeled through a classical eddy-viscosity. The other contribution including both filtered and subfilter scales is dynamically computed as solution of a generalized (stochastic) Langevin equation. This equation is derived using Rapid Distortion Theory (RDT) applied to the subfilter scales. The general friction operator therefore includes both advection and stretching by the resolved scale. The stochastic noise is derived as the sum of a contribution from the energy cascade and a contribution from the pressure. The LES model is thus made of an equation for the resolved scale, including the turbulent force, and a generalized Langevin equation integrated on a twice-finer grid. The model is validated by comparison to DNS and is tested against classical LES models for isotropic homogeneous turbulence, based on eddy viscosity. We show that even in this situation, where no walls are present, our inclusion of backscatter through the Langevin equation results in a better description of the flow.
Synthetic turbulence models are a useful tool that provide realistic representations of turbulence, necessary to test theoretical results, to serve as background fields in some numerical simulations, and to test analysis tools. Models of 1D and 3D sy
We formulate multifractal models for velocity differences and gradients which describe the full range of length scales in turbulent flow, namely: laminar, dissipation, inertial, and stirring ranges. The models subsume existing models of inertial rang
A public database system archiving a direct numerical simulation (DNS) data set of isotropic, forced turbulence is described in this paper. The data set consists of the DNS output on $1024^3$ spatial points and 1024 time-samples spanning about one la
Analytical non-perturbative study of the three-dimensional nonlinear stochastic partial differential equation with additive thermal noise, analogous to that proposed by V.N. Nikolaevskii [1]-[5]to describe longitudinal seismic waves, is presented. Th
We present a model describing evolution of the small-scale Navier-Stokes turbulence due to its stochastic distortions by much larger turbulent scales. This study is motivated by numerical findings (laval, 2001) that such interactions of separated sca