ﻻ يوجد ملخص باللغة العربية
Strong effect of beam coherent scattering (reflection) in a field of bent crystal is observed in crystal collimation experiments performed with heavy ions and protons at RHIC and started at Tevatron collider. Detailed simulation using Monte Carlo code CATCH is done in order to understand the observations and relate them to the physics of beam coherent scattering in crystal. A.M. Taratin and S.A. Vorobiev predicted the effect of beam volume reflection in bent crystals in 1987. The presented data is the first manifestation of this new physical phenomenon in experiment.
The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various cry
We present theory for coherent effects observed in crystal collimation experiments that is in good quantitative agreement with RHIC and Tevatron data. We show that coherent scattering in a bent crystal strongly amplifies beam diffusion, with an effec
The studies of crystal collimation in the experiments at Relativistic Heavy Ion Collider and Tevatron and in computer simulations reveal strong coherent effects observed in a very broad angular range. Our theory explains the effects by coherent scatt
We show that theory predictions for volume reflection in bent crystals agree with recent experimental data. This makes possible to predict volume reflection angle and efficiency in a broad range of energy for various crystals. A simple formula is pro
The Large Hadron Collider (LHC) uses a multi-stage collimator system to absorb the growing halo of circulating beams to protect and ensure reliable operation of superconducting magnets. A similar system is planned for the Future Circular Collider (FC