ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy of seismic electric signals: Analysis in natural time under time-reversal

78   0   0.0 ( 0 )
 نشر من قبل Panayiotis Varotsos
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electric signals have been recently recorded at the Earths surface with amplitudes appreciably larger than those hitherto reported. Their entropy in natural time is smaller than that, $S_u$, of a ``uniform distribution. The same holds for their entropy upon time-reversal. This behavior, as supported by numerical simulations in fBm time series and in an on-off intermittency model, stems from infinitely ranged long range temporal correlations and hence these signals are probably Seismic Electric Signals (critical dynamics). The entropy fluctuations are found to increase upon approaching bursting, which reminds the behavior identifying sudden cardiac death individuals when analysing their electrocardiograms.



قيم البحث

اقرأ أيضاً

We report on a novel stochastic analysis of seismic time series for the Earths vertical velocity, by using methods originally developed for complex hierarchical systems, and in particular for turbulent flows. Analysis of the fluctuations of the detre nded increments of the series reveals a pronounced change of the shapes of the probability density functions (PDF) of the series increments. Before and close to an earthquake the shape of the PDF and the long-range correlation in the increments both manifest significant changes. For a moderate or large-size earthquake the typical time at which the PDF undergoes the transition from a Gaussian to a non-Gaussian is about 5-10 hours. Thus, the transition represents a new precursor for detecting such earthquakes.
87 - A. Saichev 2004
We report an empirical determination of the probability density functions P(r) of the number r of earthquakes in finite space-time windows for the California catalog, over fixed spatial boxes 5 x 5 km^2 and time intervals dt =1, 10, 100 and 1000 days . We find a stable power law tail P(r) ~ 1/r^{1+mu} with exponent mu approx 1.6 for all time intervals. These observations are explained by a simple stochastic branching process previously studied by many authors, the ETAS (epidemic-type aftershock sequence) model which assumes that each earthquake can trigger other earthquakes (``aftershocks). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. We develop the full theory in terms of generating functions for describing the space-time organization of earthquake sequences and develop several approximations to solve the equations. The calibration of the theory to the empirical observations shows that it is essential to augment the ETAS model by taking account of the pre-existing frozen heterogeneity of spontaneous earthquake sources. This seems natural in view of the complex multi-scale nature of fault networks, on which earthquakes nucleate. Our extended theory is able to account for the empirical observation satisfactorily. In particular, the adjustable parameters are determined by fitting the largest time window $dt=1000$ days and are then used as frozen in the formulas for other time scales, with very good agreement with the empirical data.
397 - Ziyu Chen , Hau-Tieng Wu 2020
To handle time series with complicated oscillatory structure, we propose a novel time-frequency (TF) analysis tool that fuses the short time Fourier transform (STFT) and periodic transform (PT). Since many time series oscillate with time-varying freq uency, amplitude and non-sinusoidal oscillatory pattern, a direct application of PT or STFT might not be suitable. However, we show that by combining them in a proper way, we obtain a powerful TF analysis tool. We first combine the Ramanujan sums and $l_1$ penalization to implement the PT. We call the algorithm Ramanujan PT (RPT). The RPT is of its own interest for other applications, like analyzing short signal composed of components with integer periods, but that is not the focus of this paper. Second, the RPT is applied to modify the STFT and generate a novel TF representation of the complicated time series that faithfully reflect the instantaneous frequency information of each oscillatory components. We coin the proposed TF analysis the Ramanujan de-shape (RDS) and vectorized RDS (vRDS). In addition to showing some preliminary analysis results on complicated biomedical signals, we provide theoretical analysis about RPT. Specifically, we show that the RPT is robust to three commonly encountered noises, including envelop fluctuation, jitter and additive noise.
We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.
A likely source of earthquake clustering is static stress transfer between individual events. Previous attempts to quantify the role of static stress for earthquake triggering generally considered only the stress changes caused by large events, and o ften discarded data uncertainties. We conducted a robust two-fold empirical test of the static stress change hypothesis by accounting for all events of magnitude M>=2.5 and their location and focal mechanism uncertainties provided by catalogs for Southern California between 1981 and 2010, first after resolving the focal plane ambiguity and second after randomly choosing one of the two nodal planes. For both cases, we find compelling evidence supporting the static triggering with stronger evidence after resolving the focal plane ambiguity above significantly small (about 10 Pa) but consistently observed stress thresholds. The evidence for the static triggering hypothesis is robust with respect to the choice of the friction coefficient, Skemptons coefficient and magnitude threshold. Weak correlations between the Coulomb Index (fraction of earthquakes that received positive Coulomb stress change) and the coefficient of friction indicate that the role of normal stress in triggering is rather limited. Last but not the least, we determined that the characteristic time for the loss of the stress change memory of a single event is nearly independent of the amplitude of the Coulomb stress change and varies between ~95 and ~180 days implying that forecasts based on static stress changes will have poor predictive skills beyond times that are larger than a few hundred days on average.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا