ﻻ يوجد ملخص باللغة العربية
An interest for the low-energy range of the nonextensive distribution function arises from the study of radiative recombination in electron cooling devices in particle accelerators, whose experimentally measured reaction rates are much above the theoretical prediction. The use of generalized distributions, that differ from the Maxwellian in the low energy part (due to subdiffusion between electron and ion bunches), may account for the observed rate enhancement. In this work, we consider the isotropic distribution function and we propose a possible experiment for verifying the existence of a cut-off in the generalized momentum distribution, by measuring the spectrum of the X-rays emitted from radiative recombination reactions.
Electron-ion recombination of completely stripped Bi83+ was investigated at the Experimental Storage Ring (ESR) of the GSI in Darmstadt. It was the first experiment of this kind with a bare ion heavier than argon. Absolute recombination rate coeffici
Dielectronic recombination has been investigated for Delta-n = 1 resonances of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s ^3S). The ground-state spectrum shows three prominent transitions between 53 and 64 eV, while
The parity nonconservation effect on the radiative recombination of electrons with heavy hydrogenlike ions is studied. Calculations are performed for the recombination into the $2^1S_0$ state of helium-like thorium and gadolinium, where, due to the n
Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T_e^-9/2. We measure three-body recombination in an ultracold neutral xenon plasma by detecting re
Photodetachment thermometry on a beam of OH$^-$ in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the l