ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolithic CMOS Pixel R&D for the ILC at LBNL

68   0   0.0 ( 0 )
 نشر من قبل Marco Battaglia
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An R&D program on monolithic CMOS pixel sensors for application at the ILC has been started at LBNL. This program profits of significant synergies with other R&D activities on CMOS pixel sensors. The project activities after the first semester of the R&D program are reviewed.

قيم البحث

اقرأ أيضاً

101 - J. Carman , S. Crosby , V. Fadeyev 2009
The Santa Cruz Institute for Particle Physics (SCIPP) continues to be engaged in research and development towards an ILC detector. The latest efforts at SCIPP are described, including those associated with the LSTFE front-end readout ASIC, the use of charge division to obtain a longitudinal coordinate from silicon strip detectors, and the contribution of strip resistance to readout noise.
The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 mu m. It provides continuous self-triggered, non-shuttered readout at rates up to 30 Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 mu m^2. The hit efficiency depen ds on the chosen working point. Settings with a power consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam campaigns are shown.
Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut fur Technologie (KIT), Institut de Fisica dAltes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200$Omega$ cm irradiated with neutrons showed a radiation hardness up to a fluence of $10^{15}$n$_{eq}$cm$^{-2}$ with a hit efficiency of about 99% and a noise occupancy lower than $10^{-6}$ hits in a LHC bunch crossing of 25ns at 150V.
CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad
103 - M. Dyndal , V. Dao , P. Allport 2019
Depleted Monolithic Active Pixel Sensor (DMAPS) prototypes developed in the TowerJazz 180 nm CMOS imaging process have been designed in the context of the ATLAS upgrade Phase-II at the HL-LHC. The pixel sensors are characterized by a small collection electrode (3 $mu$m) to minimize capacitance, a small pixel size ($36.4times 36.4$ $mu$m), and are produced on high resistivity epitaxial p-type silicon. The design targets a radiation hardness of $1times10^{15}$ 1 MeV n$_{eq}$/cm$^{2}$, compatible with the outermost layer of the ATLAS ITK Pixel detector. This paper presents the results from characterization in particle beam tests of the Mini-MALTA prototype that implements a mask change or an additional implant to address the inefficiencies on the pixel edges. Results show full efficiency after a dose of $1times10^{15}$ 1 MeV n$_{eq}$/cm$^{2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا