ترغب بنشر مسار تعليمي؟ اضغط هنا

Progress on indium and barium single ion optical frequency standards

79   0   0.0 ( 0 )
 نشر من قبل Jeff Sherman
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report progress on 115In+ and 137Ba+ single ion optical frequency standards using all solid-state sources. Both are free from quadrupole field shifts and together enable a search for drift in fundamental constants.



قيم البحث

اقرأ أيضاً

252 - Jeff A. Sherman 2009
Single trapped ions are ideal systems in which to test atomic physics at high precision: they are effectively isolated atoms held at rest and largely free from perturbing interactions. This thesis describes several projects developed to study the str ucture of singly-ionized barium and more fundamental physics. First, we describe a spin-dependent electron-shelving scheme that allows us to perform single ion electron spin resonance experiments in both the ground 6S_{1/2} and metastable 5D_{3/2} states at precision levels of 10^{-5}. We employ this technique to measure the ratio of off-resonant light shifts (or ac-Stark effect) in these states to a precision of 10^{-3} at two different wavelengths. These results constitute a new high precision test of heavy-atom atomic theory. Such experimental tests in Ba+ are in high demand since knowledge of key dipole matrix elements is currently limited to about 5%. Ba+ has recently been the subject of theoretical interest towards a test of atomic parity violation for which knowledge of dipole matrix elements is an important prerequisite. We summarize this parity violation experimental concept and describe new ideas. (continued...)
Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, wh ich may induce cycle synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a FPGA-based phase analyzer to investigate these effects and conducted measurements on two frequency standards. For the caesium fountain PTB-CSF2 we were able to exclude phase variations of the microwave source at the level of a few $mu$rad, corresponding to relative frequency shifts of less than 10$^{-16}$. In the optical domain, we investigated phase variations in PTBs Yb$^+$ optical frequency standard and made detailed measurements of AOM chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than 10$^{-18}$.
303 - M. R. Dietrich , N. Kurz , T. Noel 2010
State preparation, qubit rotation, and high fidelity readout are demonstrated for two separate baseven qubit types. First, an optical qubit on the narrow 6S$_{1/2}$ to 5D$_{5/2}$ transition at 1.76 $mu$m is implemented. Then, leveraging the technique s developed there for readout, a ground state hyperfine qubit using the magnetically insensitive transition at 8 GHz is accomplished.
120 - Amar C. Vutha 2015
Gravitational waves imprint apparent Doppler shifts on the frequency of photons propagating between an emitter and detector of light. This forms the basis of a method to detect gravitational waves using Doppler velocimetry between pairs of satellites . Such detectors, operating in the milli-hertz gravitational frequency band, could lead to the direct detection of gravitational waves. The crucial component in such a detector is the frequency standard on board the emitting and receiving satellites. We point out that recent developments in atomic frequency standards have led to devices that are approaching the sensitivity required to detect gravitational waves from astrophysically interesting sources. The sensitivity of satellites equipped with optical frequency standards for Doppler velocimetry is examined, and a design for a robust, space-capable optical frequency standard is presented.
255 - Bo Yan , Yisheng Ma , Yuzhu Wang 2008
We propose a new scheme of microwave frequency standards based on pulsed coherent optical information storage. Unlike the usual frequency reference where the Ramsey fringe is printed on the population of a certain state, we print the Ramsey fringe on the coherence. Then the coherence is detected in the form of a retrieval light. The central line of the Ramsey fringe can be used as a frequency reference in an absorption-cell-based atomic frequency standard. This scheme is free of light shifts as the interrogating process is separated from the optical pumping processes, and the cavity pulling effect is negligible due to the low Q requirement. Encoding the Ramsey interference into the retrieval light pulse has the merit of high signal to noise ratio and the estimated frequency stability of shot noise limit is about $2times10^{-14}$ in 1 second, this scheme is promising for building small, compact and stable atomic frequency standards.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا