ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization properties and dispersion relations for spiral resonances of a dielectric rod

142   0   0.0 ( 0 )
 نشر من قبل Harald G. L. Schwefel
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric microcavities based on cylindrical and deformed cylindrical shapes have been employed as resonators for microlasers. Such systems support spiral resonances with finite momentum along the cylinder axis. For such modes the boundary conditions do not separate and simple TM and TE polarization states do not exist. We formulate a theory for the dispersion relations and polarization properties of such resonances for an infinite dielectric rod of arbitrary cross-section and then solve for these quantities for the case of a circular cross-section (cylinder). Useful analytic formulas are obtained using the eikonal (Einstein-Brillouin-Keller) method which are shown to be excellent approximations to the exact results from the wave equation. The major finding is that the polarization of the radiation emitted into the far-field is linear up to a polarization critical angle (PCA) at which it changes to elliptical. The PCA always lies between the Brewster and total-internal-reflection angles for the dielectric, as is shown by an analysis based on the Jones matrices of the spiraling rays.



قيم البحث

اقرأ أيضاً

The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the lights electric field acts upon the (induced) bound charges in the medium, its magnetic fi eld exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewsters angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.
Subwavelength dielectric structures offer an attractive low loss alternative to plasmonic structures for the development of resonant optics functionality such as metamaterials. Nonspherical like rectangular structures are of most interest from the st andpoint of device development due to fabrication convenience. However, no intuitive fundamental understanding of optical resonance in nonspherical structures is available, which has substantially delayed the device development with dielectric materials. Here we elucidate the general fundamentals of optical resonances in nonspherical subwavelength dielectric structures of different shapes (rectangular or triangular) and dimensionalities (1D nanowires and 0D nanoparticles). We demonstrate that the optical properties (i.e. light absorption) of nonspherical structures are dictated by the eigenvalue of the structures leaky modes. Leaky modes are defined as natural optical modes with propagating waves outside the structure. We also elucidate the dependence of the eigenvalue on physical features of the structures. The eigenvalue shows scaling invariance with the overall size, weakly relies on the refractive index, but linearly depends on the size ratio of different sizes of the structure. We propose a modified Fabry-Perot model to account for this linear dependence. Knowledge of the dominant role of leaky modes and the dependence of leaky mode on physical features can serve as a powerful guide for the rational design of devices with desired optical resonances. It opens up a pathway to design devices with functionality that has not been explored due to lack of intuitive understanding, for instance, imaging devices able to sense incident angle, or superabsorbing photodetectors.
Using the Finite-Difference-Time-Domain (FDTD) method, we compute the electromagnetic field distribution in and around dielectric media of various shapes and optical properties. With the aid of the constitutive relations, we proceed to compute the bo und charge and bound current densities, then employ the Lorentz law of force to determine the distribution of force-density within the regions of interest. For a few simple cases where analytical solutions exist, these solutions are found to be in complete agreement with our numerical results. We also analyze the distribution of fields and forces in more complex systems, and discuss the relevance of our findings to experimental observations. In particular, we demonstrate the single-beam trapping of a dielectric micro-sphere immersed in a liquid under conditions that are typical of optical tweezers.
Birefringent materials or nanostructures that introduce phase differences between two linear polarizations underpin the operation of wave plates for polarization control of light. Here we develop metasurfaces realizing a distinct class of complex-bir efringent wave plates, which combine polarization transformation with a judiciously tailored polarization-dependent phase retardance and amplitude filtering via diffraction. We prove that the presence of loss enables the mapping from any chosen generally non-orthogonal pair of polarizations to any other pair at the output. We establish an optimal theoretical design-framework based on pairwise nanoresonator structures and experimentally demonstrate unique properties of metasurfaces in the amplification of small polarization differences and polarization coupling with unconventional phase control. Furthermore, we reveal that these metasurfaces can perform arbitrary transformations of biphoton polarization-encoded quantum states, including the modification of the degree of entanglement. Thereby, such flat devices can facilitate novel types of multi-functional polarization optics for classical and quantum applications.
A robust and efficient field-only nonsingular surface integral method to solve Maxwells equations for the components of the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector Helmholtz equation and the divergence-free constraint are satisfied inside and outside the scatterer. The divergence-free condition is replaced by an equivalent boundary condition that relates the normal derivatives of the electric field across the surface of the scatterer. Also, the continuity and jump conditions on the electric and magnetic fields are expressed in terms of the electric field across the surface of the scatterer. Together with these boundary conditions, the scalar Helmholtz equation for the components of the electric field inside and outside the scatterer is solved by a fully desingularized surface integral method. Comparing with the most popular surface integral methods based on the Stratton-Chu formulation or the PMCHWT formulation, our method is conceptually simpler and numerically straightforward because there is no need to introduce intermediate quantities such as surface currents and the use of complicated vector basis functions can be avoided altogether. Also, our method is not affected by numerical issues such as the zero frequency catastrophe and does not contain integrals with (strong) singularities. To illustrate the robustness and versatility of our method, we show examples in the Rayleigh, Mie, and geometrical optics scattering regimes. Given the symmetry between the electric field and the magnetic field, our theoretical framework can also be used to solve for the magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا